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Abstract 

Development of New Control Software for the JEXO Exoskeleton Robot 

Luke Eyles | SPR-22-09582 

Supervisor: Dr Marc Carmichael 

Major: Mechanical and Mechatronic Engineering 

 

The UTS Robotics Institute developed an upper limb exoskeleton robot, JEXO. This robot 

was built to be a research platform to test control algorithms related to human-robot 

interaction. However, the robot’s control software became outdated, having been authored in 

2014 and not receiving any updates since 2017. It also lacked consistent documentation, 

making it time-consuming for newcomers to the project to develop a complete understanding 

of the software. There was also no way to test new software without access to the physical 

robot, compounding this problem.  

In this project, the JEXO codebase was updated using modern ROS features and best practice 

conventions to improve maintainability, robustness, and ease of use when implementing new 

control systems. The theory behind the control systems implemented in the existing code was 

analysed, and alternative control strategies were researched in a literature review.  

A simulation was developed to enable programming and testing control algorithms without 

requiring access to the physical exoskeleton. The Gazebo simulator was used together with 

integration from ROS Control. The architecture of ROS Control decouples controllers from 

the hardware, which enables the same controllers to be used for both the real robot and the 

simulation.  

Detailed documentation has been created for the new codebase. Together with the improved 

modularity, this allows future controllers to be developed more easily as it reduces the time to 

learn and understand the control software. Overall, the work of this project has improved the 

functionality of JEXO as a research platform. 
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1 Introduction 

The Robotics Institute (RI) at UTS has a custom robotic exoskeleton arm called JEXO 

(Figure 1). This exoskeleton serves as a research platform for human-robot interaction control 

algorithms. This research could further exoskeleton rehabilitation for patients who have lost 

strength or range of motion of their upper arm, or be utilised in industrial applications to 

enhance normal human strength and reduce risk of injury. 

 

Figure 1: JEXO exoskeleton arm 

The control software for JEXO was programmed in C++ using the Robot Operating System 

(ROS), which is an open source set of libraries and tools for robotic applications. The 

exoskeleton control software can be broken into two main parts. The first is the admittance 

controller, which takes input from the force/torque sensor on the handle of the robot and 

commands the velocity of the end effector of the robot in the task space. This required 

movement is then fed into the joint controller, which computes how to move the joints of the 

robot to execute the desired task. 

1.1 Project Scope 

The primary aims of this project are to implement a simulation of the exoskeleton so that 

development can be done outside the lab, to improve the codebase to facilitate later research 

projects, and to investigate alternative control solutions for potential future implementation. 

With the original exoskeleton control software, there is no capability for testing without 

access to the physical robot. Implementing a simulation expedites future development by 
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enabling immediate testing of any changes on the simulation, reducing time spent in the lab 

working out errors. This also enables people to work on the exoskeleton simultaneously, 

improving its value as a research platform.  

The codebase can be improved by implementing best practice principles of documentation, 

modularity, and reusability. Current documentation is sparse, so building a well-documented 

codebase will reduce the time for newcomers to understand and add to the code. The software 

is also outdated, being built using Robot Operating System (ROS) Indigo, which was released 

in 2014. The codebase should be updated to ROS Noetic, the most recent version of ROS, to 

ensure compatibility with recent ROS packages and enable use of current ROS features. 

The current admittance controller on the JEXO exoskeleton arm only uses the damping 

parameter, so the end effector velocity is simply proportional to the input force. This means 

that there is an inherent trade-off between stability and force required. This project 

investigates alterative admittance control methods, and recommends one to implement.  

JEXO is a redundant robot, having five joints but only being controlled in the task space 

along three axes. The current redundant joint controller uses task space augmentation to 

choose the solution, adding one constraint task to solve for the redundancy in the shoulder 

and another constraint task to choose the optimal swivel angle of the elbow. However, there 

are many other methods of redundant robot control that can be used to optimise for different 

parameters, such as singularity avoidance, minimum joint velocity, avoidance of joint limits, 

and collision avoidance. This project investigates other potential redundant joint controllers 

that could be implemented on JEXO. 

1.2 Context and Impact 

The societal impact that a rehabilitative exoskeleton arm would have is to increase access to 

physical therapy for those who require it, due to injuries or other conditions such as a stroke. 

According to the ABS (2012), 1.8% of Australians have suffered from a stroke, with 35% of 

those having an impairment that lasts for six months or longer because of this. There is 

therefore a large population of people who would benefit from using a rehabilitative 

exoskeleton arm. 

Strokes can cause muscle weakness, fatigue, muscle tightness, and muscle contractures in the 

arms. Physical therapy is needed to assist with recovery, helping to achieve functional levels 

before the stroke and preventing deterioration (López-Liria et al. 2016). One of the most 
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effective types of physical therapy for the upper limbs is task-oriented training, where the 

patient repeatedly trains performing everyday tasks (Van Peppen et al. 2004). A rehabilitative 

arm exoskeleton can assist with this type of training. Training is most effective when there is 

a high level of transparency, meaning that the task should be clear to the patient and the robot 

should not force the patient to move in a particular way (Nathanael et al. 2014).  

2 Literature Review 

A literature review was performed on current methods of exoskeleton control. The review 

was split into two components, admittance control strategies in the task space, and redundant 

robot control methods to map desired task space velocities to joint space velocities. 

2.1 Task Space Control 

The most common approach to exoskeleton control in the task space is admittance control. In 

this system, the exoskeleton is treated as a mechanical admittance, mapping a force input to a 

motion output (Figure 2). The exoskeleton is modelled as a mass-damper system, which can 

be described by: 

𝑚�̈� + 𝑐�̇� = 𝐹 

Stiffness in the environment can cause instability, so the parameters of the controller need to 

be tuned to ensure the exoskeleton is stable and accurate but does not require a large amount 

of effort to use.  

Dimeas and Aspragathos (2016) designed a controller where the admittance control gains 

were dynamically changed during operation to maintain stability while being highly 

responsive. They did this by monitoring for high frequency force oscillations and increasing 

the virtual inertia when more stability is needed, as they found that it was better to increase 

the inertia parameter than the damping parameter to increase stability while minimising the 

effort required from the operator. 
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Figure 2: Admittance controller diagram (Source: Dimeas and Aspragathos 2016) 

The EXO-UL7 7 DOF upper limb exoskeleton developed by UCSC used PID admittance 

control and applied the relation: 𝑥�̇�(𝑠) = (𝑀𝑎𝑠 + 𝐵𝑎 + 𝐷𝑎/𝑠)𝑓𝑑(𝑠) (Yu et. al. 2011). Their 

exoskeleton has 3 force/torque sensors at the upper arm, lower arm, and hand, which are 

combined using a weighted sum to the single command signal 𝑓𝑑. To determine the control 

parameters, they modelled the human impedance system and developed tuning rules for the 

admittance controller based on the human impedance.  

Another exoskeleton is the 5 DOF MGA Exoskeleton, which is a rehabilitative exoskeleton 

for which Carignan et al. (2007) developed a modular control system. The control system 

takes in force and torque input from a sensor at the hand, and force input from two sensors at 

the elbow. The modularity of the system means it can be configured to change between 

impedance control and admittance control for different joint groups. The system was 

modelled as a pure damper when in admittance control mode, with linear damping set to 250 

N/m/s during a path following task. 

2.2 Redundant Robot Control 

The admittance controller for the robot gives a desired velocity in the task space. To control 

the joints of the robot, this task space velocity needs to be mapped to a joint space velocity. 

The equation for the end effector velocity given the velocity of the joints is �̇�(𝑞) = 𝐽�̇�, where 

�̇� is a column vector of the end effector velocity in the task space, 𝐽 is the Jacobian matrix, 

and �̇� is a column vector of joint velocities. For a given task space velocity on a redundant 

robot, there are infinite solutions for �̇�, so the challenge is in choosing the best solution. 

There are many different methods of solving this problem that allow for optimising different 

factors, such as singularity avoidance, joint limit avoidance, obstacle avoidance, reducing the 

joint torques, and reducing the potential energy of the robot’s posture. These methods can be 
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divided into two main approaches to solving the inverse kinematics for a redundant robot, 

task space augmentation and gradient projection. 

2.2.1 Task Space Augmentation 

One method of controlling redundant robots is task space augmentation, which is the current 

method used on the JEXO. Task space augmentation is where one or more constraint tasks 

are added to the task space, making the number of task space parameters equal to the number 

of joints. The added constraint makes the number of possible solutions finite so that the joint 

velocities can be solved for.  

According to Siciliano (1989), the augmented task space can be characterised as: 

𝑥𝐴 = [
𝑥
𝑦] = [

𝑓(𝑞)

𝑓𝑦(𝑞)
] 

With x being the original task, y being the constraint task, f(q) being the forward kinematic 

function, and fy(q) being the constraint task function. Differentiating this gives the augmented 

Jacobian: 

�̇�𝐴 = 𝐽𝐴(𝑞)�̇� 

Using task space augmentation, it is possible to encounter problems where it is not possible to 

perform both the original task and the constraint task (Chiacchio et al. 1991), causing an 

algorithmic singularity. To solve this, a task priority strategy utilising the null space of the 

Jacobian can be developed so that the constraint task does not interfere with the original task. 

Chiacchio considers case studies where this strategy can be used to make the body of the 

robot follow a path, make the robot maintain a dextrous configuration, or avoid an obstacle. 

The EXO-UL7 at UCSC uses this approach to resolve the redundancy of their 7-DOF 

exoskeleton arm. They defined one constraint task as 𝑥𝑎 = ℎ(𝑞), with the gradient of the 

optimisation function ℎ̇(𝑞) chosen in the null space of the robot (Yu et al. 2011).  

2.2.2 Gradient Projection 

Another control strategy is the gradient projection method (Siciliano 1989). In this method, 

an initial solution for �̇� is found by using the pseudoinverse of the Jacobian: 

�̇� = 𝐽†(𝑞)�̇� 
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Then a term can be added to this solution that only moves the robot in the null space, and 

does not change the movement of the end effector: 

�̇� = 𝐽†(𝑞)�̇� + 𝑘[𝐼 − 𝐽†(𝑞)𝐽(𝑞)]𝑞0̇ 

By changing the value of 𝑞0̇, the pose of the robot can be adjusted in the null space. A cost 

function can then be defined as ℎ(𝑞), and by setting 𝑞0̇ = ℎ̇(𝑞)𝑇, the cost function can be 

maximised or minimised by setting 𝑘 positive for maximisation and negative for 

minimisation. For example, one cost function used by Zghal, Dubey and Euler (1990) 

optimises for minimal joint velocity by using the sum of squares of the joint velocities in the 

cost function. 

Another possible criterion is singularity avoidance. The gradient of the cost function for the 

manipulability can be formulated numerically by iterating over each joint, and testing the 

manipulability when the joint is moved forward or backward. The manipulability gradient 

can also be computed symbolically using the DH parameters of the robot, using a recursive 

method described by Park et al. (1999).  

Dubey and Luh (1987) use the gradient projection method to optimise flexibility of a 

redundant robot. They describe the manipulator velocity ratio, which is the ratio of the end 

effector velocity norm to the joint velocity norm. The cost function is then defined as the 

square of the manipulator velocity ratio along the minor axis of the manipulability ellipsoid, 

which has the effect of heavily penalising large joint velocities along the direction of poorest 

manipulability. The result of this optimisation on the motion of a three-link planar robot is 

shown below. 

 

Figure 3: Simulation of redundant robot control for higher flexibility (Source: Dubey & Luh 1987) 
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Liegeios (1977) formulated a cost function to achieve avoidance of joint limits, which pushes 

the system to the centre point of each joint range and away from the limits: 

ℎ(𝑞) =
1

𝑛
Σ𝑖=1

𝑛 (
𝑞𝑖 − 𝑞𝑖,𝑚𝑖𝑑

𝑞𝑖,𝑚𝑎𝑥 − 𝑞𝑖,𝑚𝑖𝑛
)

2

 

Obstacle avoidance can also be achieved. Khatib (1985) describes constructing an artificial 

potential field, which exerts a repulsive force on the manipulator parts as a function of the 

shortest distance from the part to the obstacle. The cost function can be set to minimise this 

force. 

Another paper by Huo and Baron (2008) considers two performance criteria, singularity 

avoidance and avoidance of joint limits. They propose a combined performance criterion that 

considers both of these tasks, and use gradient projection with the negative gradient of this 

performance criterion to optimise the performance of a welding robot. 

Tatlicioglu et al. (2008) develop a control strategy similar to the gradient projection method 

for a quaternion-based controller. They define measures that can be used to optimise for the 

sub task objectives of singularity avoidance, joint limit avoidance, bounding the impact 

forces of the end effector, and bounding the potential energy of the robot. Instead of a 

gradient-based approach, it is also possible to use these measures in a least-squares algorithm 

(Tatlicioglu et al. 2009). 

The step size 𝑘 of the null space term must be chosen large enough that the optimisation is 

efficient, but not so large that the minimum cost point is skipped over (Siciliano et al. 2016). 

This can be done using line search methods, such as Armijo’s rule. 

2.2.3 Enforcing joint limits 

A method of control for robots with hard joint constraints is Saturation in the Null Space 

(Flacco et al. 2015). This algorithm is iterative, and starts by solving for the joint states to 

satisfy a given task. It then checks if the constraint is exceeded and finds the joint that would 

most exceed its position, velocity, or acceleration constraints. It then scales the desired task 

down until the solution is within the joint’s constraints, and this process is repeated until all 

joints are within constraints. 
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2.2.4 Swivel Angle Control 

The redundancy in the human arm is termed the “swivel angle”, which is the angle of the 

elbow about the axis connecting the shoulder to the wrist. 

One method of controlling the swivel angle was proposed by Kim et al (2011). This paper 

hypothesised that a human orients their arm such that their palm can be most efficiently 

retracted to the head. Efficiency of movement in a certain direction can be quantified using 

the manipulability ellipsoid, shown in the figure below.  

 

Figure 4: Manipulability ellipsoid (Kim et al. 2011) 

To maximise efficiency of movement of the hand to the mouth, the projection of the longest 

axis of the manipulability ellipsoid (σ1) onto the line connecting the mouth to the hand is 

maximised. This means that the points of the mouth, shoulder, elbow, and wrist all lie on the 

same plane. To test this, motion of subjects performing tasks was captured and compared 

with the predicted swivel angle. An average of 5 degrees of error was found using this 

method. Further testing found that using this method reduced the energy exchange between 

the robot and user by 11.22%, with users exerting less force to perform the same task (Kim, 

Miller et al. 2012). An extension of this method was proposed to estimate the dynamic swivel 

angle based on a muscle model of the human arm (Kim, Roldan et al. 2012).  

Another method proposed by Kang et al (2005) solved for the swivel angle by minimising the 

total work done by joint torques. This paper found that joint trajectories matched subject arm 

movements with an r2 generally > 0.98. However, in analysis of this method by Kim et al 

(2012), it was found that this method did not accurately predict the position of the human arm 
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at low velocities. Due to gravity, the elbow would be located at the lowest possible position 

when static, which is not accurate to the human arm. 

Another paper by Wang et al (2019) examined participant arm motion while performing 

reaching and grasping tasks. They found that the variation in swivel angle of the subjects was 

small, with a standard deviation of 5 degrees. This paper proposes a simple approach to 

resolve the redundancy by setting the swivel angle to the mean value measured, 155 degrees.  

3 Original JEXO Design 

3.1 JEXO Hardware Design 

JEXO is a 5-DOF robot, with all joints being revolute (RRRRR). The shoulder is comprised 

of four joints, which makes the shoulder assembly redundant, as four joints control the 

rotation along three axes. This redundancy was built in to manage the singularities associated 

with 3-joint gimbal mechanisms, which occur when all three joint axes lie on the same plane 

(Carmichael & Liu n.d). The axes of rotation of each shoulder joint intersect at a common 

point corresponding with the location of the shoulder joint of the user. 

The shoulder mechanism was then optimised to maximise the upper limb reachable 

workspace, while avoiding singularities and collisions with the user. This optimisation 

defined the bend angles of each link and achieved a range of motion of 97.7% that of the 

human arm. 

JEXO was built using the actuators and joint controllers from the first generation Kinova 

Jaco, connected with custom-made aluminium links. The specifications of the actuators are 

detailed in Appendix 2. 

The Kinova Jaco uses USB 2.0 to communicate with the main control system, and CAN bus 

to communicate from the main controller to the joint controllers. The main control system 

operates at a frequency of 100 Hz, and the CAN bus can transfer data at 1 Mb/s. When 

operating at the maximum rate of 100 Hz, this gives a theoretical maximum of 2 kB per joint.  

Specification Value 

Control system frequency 100 Hz 

CPU 270 MHz 

CAN bus transfer speed 1 Mb/s 
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The Net F/T system is used to detect force at the end effector, which consists of a Nano25 

force/torque sensor and a Net Box. The force/torque sensor is mounted using a quick release 

camera mount to allow for easy attachment and detachment. M3x7mm bolts are used to 

mount the sensor to the quick release plate, and M3x3.5mm bolts are used to mount the 

handle to the sensor. The bolt holes are through holes, so the bolt depth must not be exceeded 

as this can push the two plates of the sensor apart and damage the strain gauges (ATI 

Industrial Automation 2010). 

Table 3.1: Nano25 sensing range and resolution (Source: ATI Industrial Automation 2010) 

 Sensing Range Resolution 

Calibration Fx,Fy Fz Tx,Ty Tz Fx,Fy Fz Tx,Ty Tz 

SI-125-3 125 N 500 N 3 Nm 3 Nm 1/48 

N 

1/16 

N 

1/1320 

Nm 

1/2640 

Nm 

SI-250-6 250 N 1000 

N 

6 Nm 3.4 

Nm 

1/24 

N 

1/8 N 1/660 Nm 1/1320 

Nm 

 

The force/torque sensor is communicated with via Net Box, which allows network 

connection and configuration of the force/torque sensor.   
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3.2 JEXO Control System 

The control system for the arm consists of 3 controllers, as shown in Figure 5. This project 

focuses on the first two controllers, the admittance controller and the redundant joint 

controller. 

 

Figure 5: JEXO control system overview 

The admittance controller takes the force the user applies on the robot’s handle as input and 

determines a cartesian velocity to drive the robot’s end effector to respond to this force.  

The redundant joint controller takes the desired end effector velocity produced by the 

admittance controller, and determines the joint velocities required to drive the end effector at 

this velocity. JEXO has three degrees of freedom in the task space, which are linear motion in 

the x, y, and z directions. There are two degrees of redundancy, one in the shoulder which 

uses four joints to control rotation on three axes, and the swivel angle of the elbow about the 

line connecting the shoulder to wrist. The redundant joint controller therefore must solve for 

both the redundancy in the shoulder and the swivel velocity to achieve the linear velocity 

specified by the admittance controller, while maintaining a high degree of manipulability and 

avoiding collisions with itself or the user. 

Once the desired joint velocity has been computed, the Jaco API is used to communicate the 

command to the robot. The embedded joint controllers use PID control to control the output 

motor torque. 

3.2.1 Admittance Controller 

The admittance controller models the end effector as a mechanical damper, where the 

velocity of the end effector is proportional to the forces exerted on it. This is given by the 

formula: 𝑐�̇� = Σ𝐹. A force torque sensor is used to measure force exerted by the user on the 
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end effector of the robot. The force measured is first transformed to the base frame of the 

robot, and the desired linear velocity of the end effector is computed as: 

�̇� = (𝐟𝐡 + 𝐟𝐞)/𝑐 

Where 𝐟𝐡 is the force exerted by the hand, 𝐟𝐞 is the external force, and c is the damping 

coefficient set to 100. 

3.2.2 Redundancy Resolution 

The constraint task currently used on JEXO is a kinematic constraint, where the velocity of 

the second joint is set to be proportional to the velocity of the third joint. This constraint is 

expressed as: 

𝑞2 = 𝑎𝑞3 + 𝑏 

𝑞2̇ = 𝑎𝑞3̇ 

Parameters a and b were determined in the optimisation process together with the joint 

angles. The best solution found 𝑎 =  −0.914 and 𝑏 = 5.5𝑜. 

To ensure this constraint is satisfied, the constraint error is computed as: 𝑒 = 𝑎𝑞3 + 𝑏 − 𝑞2. 

In the task space, a constraint velocity of 𝐾𝑐 ∗ 𝑒 is calculated to drive the constraint error 

down. The constraint gain 𝐾𝑐 is most commonly set to 10. 

3.2.3 Swivel Angle Control 

The method used to control the swivel angle of JEXO is similar to the method proposed by 

Kim et al (2012). This is implemented by first calculating the swivel axis 𝑡 as the unit vector 

pointing from the shoulder to the wrist, 𝑡 =
𝑃𝑠−𝑃𝑤

|𝑃𝑠−𝑃𝑤|
. An orthogonal unit vector v to t is 

computed as 𝑣 = 𝑛𝑜𝑟𝑚([𝑡𝑦, −𝑡𝑥, 0]). The cross product of v and t is then taken to complete 

the swivel angle reference frame, with transformation matrix 𝑇𝑆𝐴. 

𝑇𝑆𝐴 = [
𝑡 𝑢 𝑣 𝑃𝑠

0 0 0 1
] 
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Figure 6: Swivel angle reference frame 

The position of the elbow 𝑃𝑒 is transformed into this reference frame, 𝑃𝑒,𝑆𝐴 = 𝑇−1𝑃𝑒. The 

swivel angle is measured as: 

ϕ = 𝑎𝑡𝑎𝑛2(−𝑃,𝑆𝐴,𝑦, 𝑃𝑒,𝑆𝐴,𝑧) 

The position of the mouth is also transformed into this reference frame, 𝑃𝑚,𝑆𝐴 = 𝑇−1𝑃𝑚. The 

optimal swivel angle is computed to be: 

𝜙𝑜𝑝𝑡 = 𝑎𝑡𝑎𝑛2(𝑃𝑚,𝑆𝐴,𝑧, 𝑃𝑚,𝑆𝐴,𝑦) 

 

Figure 7: Swivel angle and desired swivel angle 

The Jacobian of the swivel angle is calculated by multiplying the swivel axis by the rotational 

component of the Jacobian (Carmichael 2014): 

𝑑ϕ

𝑑𝑞
= 𝑡 ∗ 𝐽ω 

The swivel velocity is calculated to be proportional to the swivel error if the error is outside a 

threshold.  
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ϕe
̇ = 0.5𝑒𝑆𝐴 if |𝑒𝑆𝐴| > 0.005 

In addition to this, a distance sensor is used to detect the user’s elbow and adapt the swivel 

angle to reduce collisions with the elbow. 

𝜙�̇� = 0.2(𝑑 − 40) 

The total swivel velocity is: 

ϕ̇ = ϕe
̇ + ϕṗ 

3.2.4 Joint Velocity Calculation 

As a result of the redundancy resolution, the augmented task space has 5 tasks: the original 

tasks of linear velocity on the x, y, and z axes, and the added tasks of the kinematic constraint 

velocity and swivel velocity. 

𝑥�̇� =

[
 
 
 
 

�̇�
�̇�
�̇�

𝐾𝑐 ∗ 𝑒

ϕ̇ ]
 
 
 
 

 

The augmented Jacobian is: 

𝐽𝐴 =

[
 
 
 
 
 
 
 
 
 
δ𝑥

δ𝑞1

δ𝑥

δ𝑞2

δ𝑥

δ𝑞3

δ𝑥

δ𝑞4

δ𝑥

δ𝑞5

δ𝑦

δ𝑞1

δ𝑦

δ𝑞2

δ𝑦

δ𝑞3

δ𝑦

δ𝑞4

δ𝑦

δ𝑞5

δ𝑧

δ𝑞1

𝛿𝑧

𝛿𝑞2

𝛿𝑧

𝛿𝑞3

𝛿𝑧

𝛿𝑞4

𝛿𝑧

𝛿𝑞5

0 1 −𝑎 0 0
δϕ

δ𝑞1

𝛿𝜙

𝛿𝑞2

𝛿𝜙

𝛿𝑞3

𝛿𝜙

𝛿𝑞4

𝛿𝜙

𝛿𝑞5]
 
 
 
 
 
 
 
 
 

 

The augmented Jacobian can be used to map velocities in the augmented task space to joint 

velocities: 

�̇�𝐴 = 𝐽𝐴�̇� 

Joint velocities can then be computed by inverting the augmented Jacobian: 

�̇� = 𝐽𝐴
−1�̇�𝐴 
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To ensure that joint velocities don’t exceed the rated speed of the joints, the maximum joint 

velocity is checked. If this velocity exceeds the rated speed, the joint is set to the maximum 

and other joints are scaled proportionally. 

3.3 Package Structure 

The original implementation of the JEXO control software is in C++ using ROS Indigo, and 

consists of 13 ROS packages summarised in the table below. 

Table 3.2: Original software package summary 

Name Description 

daq_snowboard Driver for the Arduino compatible platform Snowboard. 

daq_dr2600 Driver for the USB-2600 series data acquisition board. 

egismos_lrf Driver and services to query the Egismos laser range finder. 

icra_exp Experiments related to the laser range finder. 

jexo_control Nodes to compute reference velocity for the joints. 

jexo_core Driver to communicate with the robot and URDF, SRDF, and 

mesh files to describe the robot model. 

jexo_msgs Message definitions.  

jexo_wrist Node to publish joint states of the wrist assembly. 

joint_velocity_estimator Nodes to smooth joint velocities by fitting a polynomial. 

load_broadcaster Nodes to publish fixed wrench and wrench from a simulated 

spring on the end effector.  

netft Driver for the force/torque sensor. 

path_node Data processing for touch sensor. 

touch_node Data processing for touch sensor. 

 

The main packages focused on for redesign are the jexo_control, jexo_core, and netft 

packages. 
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4 Implementation 

This section outlines the decisions made and details behind the implementation of the 

exoskeleton control software. Implementation involved deciding how to structure the ROS 

packages, integrating ROS Control with the control system, using Gazebo for the simulation, 

modelling the physical parameters of the robot, and modelling the robot in MATLAB.  

Programming the control system was the largest part of this project, and involved creating 

Robot Hardware Interfaces for the real robot, the force/torque sensor, and the simulated 

force/torque sensor. Using Gazebo meant that Gazebo provided the hardware interface for the 

simulated robot. Controllers were created to link with these hardware interfaces. The joint 

controllers link to the exoskeleton hardware interfaces, and the task controllers link to the 

force/torque sensor interfaces. 

4.1 Package Structure 

The ROS packages were organised according to best practice principles: that each package 

should have a single purpose, a package should use the minimum number of dependencies, 

and a package should be able to be rewritten without breaking other packages (Robotics 

Back-End 2019). Packages are prefixed with “jexo” to avoid any naming conflicts with 

existing packages. Table 4.1 outlines the package structure and the purpose of each package. 

All packages are contained within a “jexo” metapackage, which also serves as the git 

repository. This means that to install the JEXO packages, the steps are simply to clone the 

repository in the “src” directory of the catkin_workspace, install dependencies via “rosdep 

install jexo”, and then build. 

Table 4.1: Summary of ROS packages implemented 

Package Summary 

ft_simulator Hardware interface to simulate a force/torque sensor. Provides 

a joystick-controlled hand and simulates input to the 

force/torque sensor to test admittance control without requiring 

access to the physical robot. 

jexo_bringup Launch files to initialise the robot and switch controller groups.  

jexo_core Hardware interface for JEXO. 

jexo_description URDF, SRDF, and mesh files for the robot model. 

jexo_gazebo Gazebo configuration and launch files. 
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jexo_joint_control ROS controllers that use the JEXO hardware interface to send 

joint commands and receive joint states. 

jexo_kinematics Computations for forward kinematics, kinematic Jacobian, 

swivel angle, kinematic constraint, and augmented Jacobian. 

jexo_msgs (unchanged) Message definitions. 

jexo_task_control ROS controllers that use a force/torque hardware interface to 

publish task space commands. 

joint_velocity_estimator 

(unchanged) 

Nodes to smooth joint velocities by fitting a polynomial. 

netft Hardware interface for the force/torque sensor. 

ps4_teleop Definitions to map joystick inputs to the joy ROS message. 

 

4.2 Kinematics 

The jexo_kinematics package is designed to assist with the calculations related to the 

exoskeleton’s kinematics. It uses the Orocos Kinematics and Dynamics Library (KDL) to 

read the robot’s description and calculate the forward kinematics and Jacobian, and uses the 

Eigen library for linear algebra computations. 

Originally the jexo_kinematics package consisted of two executables, one to publish the 

forward kinematics and one to publish the Jacobian. However, this created a large potential 

latency in the use of the forward kinematics and Jacobian, as it would use the last available 

joint_states message to compute these variables, and when the forward kinematics or 

Jacobian were used, the control loop would also use the last available message. This means 

that if the publishers were running at 60Hz, the Jacobian and forward kinematics could 

potentially be up to 30ms behind the current joint state data.  

Because of this, the package was changed to instead be a library that provides the 

KinematicModel and KinematicConstraintSolver classes. Methods in these classes can be 

called from inside the control loop, so that the controller can use the most recent data 

possible. 

The KinematicModel class provides KDL wrappers to compute the forward kinematics and 

Jacobian directly from a joint_states message.  
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4.2.1 Optimal Swivel Angle Calculation 

The KinematicModel class also provides a method to compute the swivel error. The optimal 

swivel angle is computed via the method proposed by Kim et al (2011), which maximises 

movement of the hand to the mouth. This was done by first defining the swivel angle 

reference frame, starting with the unit vector 𝑛 pointing from the wrist to the shoulder: 

𝑛 =
𝑃𝑤 − 𝑃𝑠

|𝑃𝑤 − 𝑃𝑠|
 

The vector 𝑢 was chosen to point downwards, orthogonal to 𝑛, as it is intuitive to have zero 

swivel angle when the elbow is at its lowest position. This was computed by setting a 

downward vector 𝑎 =  [0 0 −1]. The vector 𝑢 is: 

𝑢 =
𝑎 − 𝑎 ⋅ 𝑛 ∗ 𝑛

|𝑎 − 𝑎 ⋅ 𝑛 ∗ 𝑛|
 

The final vector completing the swivel reference frame is calculated with the cross product, 

𝑣 =  𝑛 × 𝑢. 

 

Figure 8: Swivel angle reference frame 

The current swivel angle ϕ is calculated by transforming the position of the elbow 𝑃𝐸 into the 

swivel angle reference frame, which is the same as the original code.  
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Figure 9: Current and optimal swivel angle in the swivel angle reference frame 

The optimal swivel angle ϕ𝑜𝑝𝑡 is calculated by defining a vector f pointing from the wrist to 

the mouth. The optimal swivel angle can then be calculated by: 

𝑓′ = 𝑓 − 𝑓 ⋅ 𝑛 ∗ 𝑛 

𝜙𝑜𝑝𝑡 = −𝑎𝑡𝑎𝑛2(𝑛 ⋅ (𝑓′ × 𝑢), 𝑓′ ⋅ 𝑢) 

Finally, the swivel error is given by: 

𝜙𝑒 = 𝜙𝑜𝑝𝑡 − 𝜙 

4.2.2 Joint Velocity Calculation 

The KinematicConstraintSolver class provides a method to calculate the joint velocity given 

the current joint states and the desired task space velocity, using the same task space 

augmentation method as the previous control system, outlined in Section 3.2.4. 

4.3 ROS Control 

ROS Control is a set of ROS packages designed to decouple controllers from the hardware of 

the robot. This decoupling from the hardware was key in implementing the robot simulation, 

as it enabled the same controllers to be used for both the real robot and simulation. The below 

flow diagram provides an overview of the architecture and flow of data in ROS Control.  
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Figure 10: ROS Control Flow Diagram (Source: ROS 2014) 

At a high level, a hardware interface is created for the robot that provides the controllers 

access to standardised interfaces. For example, the “JointStateInterface” will give access to 

the robot’s current joint states, and the “EffortJointInterface” will allow the controller to send 

effort commands. 

The controllers run in a real time loop, using the hardware interface provided to respond to 

inputs and control the robot. The controller can be specified using standardised interfaces, 

meaning controllers can be made generic to any robot that provides the same interface. 

Controllers are run through the controller manager. The controller manager can also load, 

unload, and switch controllers, meaning different controllers can be used without needing to 

stop and start a separate program.  

4.3.1 Advantages 

ROS Control was used for this project because it provides three main advantages. Firstly, 

ROS controllers run in a real time loop, which reduces latency and increases the 

responsiveness of the robot.  
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Secondly, use of ROS control improves modularity and reusability through the set of 

standardised interfaces. The capability for a controller to be used on any robot that provides a 

compatible hardware interface means that the same controllers can easily be used on both the 

real hardware and in simulation.  

Thirdly, implementing the hardware interface enables switching controllers during runtime. 

For example, the robot could first be jogged to a comfortable starting position, then the 

operator could grasp the handle and switch to the admittance controller when they are ready.  

4.4 JEXO Hardware Interface 

The JEXO Hardware Interface is located in the jexo_core package. Originally, the robot 

control software used the “jaco” node to receive joint commands through messages sent to 

the /ref_vel topic, and interface with the API to forward these commands to the robot and 

query the robot’s joint states. This was switched this to a ROS Control Robot Hardware 

Interface for the advantages outlined in the section above. 

The robot hardware interface implemented for JEXO provides three standardised interfaces, 

the JointStateInterface which provides data from the robot’s joints, the VelocityJointInterface 

which is used to command joint velocity, and the PositionJointInterface which enables 

commanding joint position. The Kinova Jaco API is used to communicate with the robot’s 

embedded controllers. 

The read() function uses the GetAngularPosition API call to retrieve the joint positions. The 

joint velocities are then calculated by dividing the change in position by the time between 

position readings. The write() function uses the SendBasicTrajectory API call to command 

the joint velocity or position. The hardware interface determines whether to command joint 

velocity or position through the doSwitch() function, which checks which controllers are 

loaded and sets an internal variable based on whether they are position or velocity controllers. 

In the main loop, the hardware interface is created, and a ControllerManager is initialised 

with the hardware interface to provide controllers with access to the hardware interface. A 

separate AsyncSpinner thread is created to ensure callbacks are handled. The node then enters 

a loop that reads the joint positions, updates the controller manager, and commands joint 

velocities.  

The main limiting factor in the loop rate of the main loop is the data rate in communicating 

with the robot. Kinova Support verified that the Gen 1 and Gen 2 Jaco arms use the same 
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API, so a separate hardware interface using the newest API version was implemented and 

tested to determine if there were any speed improvements between the two versions. Two 

tests were run with each hardware interface, the first calling the getAngularPosition method 

in the read() function and the second calling both the getAngularPosition and 

getAngularForce methods. The main loop was run for 1 minute continuously in each case, 

and the average loop frequency was calculated after this time. Unfortunately, there was no 

significant difference in speed between new and old versions of API, with the new version 

being marginally slower in both cases. The API version used was therefore left unchanged in 

this project. 

With no difference between the two API versions, this means that the CAN bus data rate is 

the most likely factor limiting the loop rate. Improving this would require modifying the 

firmware of the robot to optimise the data communicated, as each packet contains data 

pertaining to the Jaco which is unnecessary for JEXO, such as finger position.  

Table 4.2: Hardware Interface loop rate API comparison 

API Version Mean loop rate with effort Mean loop rate without effort 

6.1.0 (Gen 2) 140.7 Hz 188.0 Hz 

5.0.1 (Gen 1) 140.8 Hz 188.3 Hz 

 

4.5 Joint Controllers 

Joint controllers are located in the jexo_joint_control package. The joint controllers take 

commands from the ROS interface as input, and communicate with the JEXO hardware 

interface to receive joint data and execute joint commands. The joint controllers implement 

the controller interfaces corresponding to the standardised interfaces in the JEXO hardware 

interface.  

Controllers make use of two features of the Realtime Tools ROS Package, RealtimeBuffer 

and RealtimePublisher. RealtimeBuffer is used in callbacks and operates similar to a mutex, 

with the key difference being that writing to the buffer is done in non-real time, and reading 

from the buffer is done in real time. This means that the update() loop of the controller can 

function in real time, whereas if a mutex were used, the update() loop would be blocked when 

the callback was writing to the variable. RealtimePublisher is a realtime safe wrapper for the 

standard ROS Publisher, and allows publishing ROS messages from within the update loop. 
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4.5.1 Joint Velocity Controller 

The JointVelocityController implements the VelocityJointInterface to give direct control of 

the velocity of each joint of the robot. The controller subscribes to the /joy topic so that a 

joystick can be used to control the robot’s joints. In the update loop, it forwards the joystick 

commands for each joint to the Controller Manager, which then communicates with the 

hardware interface to move the robot. 

4.5.2 Cartesian Controller 

The CartesianController also implements the VelocityJointInterface. It subscribes to the 

/jexo/task_cmd topic to get commands in the cartesian task space, and /jexo/joint_states to 

receive the most recent joint information. In the update loop, it calculates the velocity to 

command each joint of the robot, using the methods provided in the jexo_kinematics 

package.  

4.5.3 Joint Position Controller 

The JointPosition controller implements the PositionJointInterface. It subscribes to the topic 

/jexo/joint_cmd, and the command line can be used to publish to this topic. In the update 

loop, it forwards these position commands to the Controller Manager. 

4.5.4 Joint State Controller 

The JointStateController is a fork of the Joint State Controller provided by ROS Control. The 

original controller published joint states to the /joint_states topic, which could not be changed 

as the remap node argument does not work on ROS Controllers, since they are not run as an 

individual node but through the Controller Manager. The controller was modified to take the 

topic name as a controller parameter, so that the controller can be configured to publish to 

/joint_states_raw, which is then smoothed by the joint_velocity_estimator, which publishes 

the smoothed joint states to /joint_states. 

4.6 Force Torque Sensor Hardware Interface 

The NetFTInterface is located in the netft package and provides the 

ForceTorqueSensorInterface for the NetFT force/torque sensor. When the interface is 

running, it communicates with the NetFT sensor over ethernet to query the force and torque 

data. This data is used to update the Controller Manager, which makes the force and torque 

data available to controllers that implement the ForceTorqueSensorInterface. As with the 
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original netft node, the NetFTInterface also provides a “bias” service, which can be called to 

reset the force/torque readings to zero. 

4.7 Force Torque Sensor Simulator 

As the robot is velocity controlled, the position of the robot tends to drift slowly over time. In 

reality, this error is corrected by the human operator exerting a small opposing force to the 

direction it is drifting in. This force is fed through the admittance controller and then the joint 

controller to correct the position of the exoskeleton.  

To make the simulation behave closer to reality and to enable testing of admittance 

controllers, the force torque sensor simulator was created with the ft_simulator package. It 

works by simulating a human hand, modelling it as a spring-damper system to compute the 

force exerted on the end effector. This is given by the equation 𝐹 = 𝑘𝑦 + 𝑐�̇�, where 𝑦 is the 

distance to the end effector and �̇� is the difference between the velocity of the hand and the 

velocity of the end effector. 

The velocity of the virtual hand is operated by a joystick. The simulator uses the forward 

kinematics of the robot to calculate the distance between the position of the hand and the 

position of the robot’s end effector, then calculates a restoring force to pull the end effector 

back to the position of the hand. This force is expressed in the reference frame of the end 

effector so that it can be easily substituted by force from a force torque sensor on the real 

robot’s end effector. The hand is visualised in RViz using a red marker and the force is 

visualised using a green arrow, shown in Figure 11. 

 

Figure 11: Admittance control using the force/torque sensor simulator 
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The force torque sensor simulator was implemented using ROS Control, with the simulator 

providing a ForceTorqueSensorInterface. The task space controllers then implement this 

interface.  

4.8 Task Controllers 

The task space controllers are located in the jexo_task_control package, and implement the 

ForceTorqueSensorInterface. The task space controllers publish commands in the (x, y, z) 

task space, which are input to the CartesianController to convert to joint space commands.  

4.8.1 Admittance Controller 

The AdmittanceController commands the task space velocity based on the force measured by 

the force/torque sensor at the end effector. The task space velocity is computed by modelling 

the exoskeleton as a mechanical admittance, using the same method outlined in Section 3.2.1. 

An inertia parameter is passed to the controller, but unfortunately inertia could not be 

implemented due to time constraints. Once calculated, the task space velocity is transformed 

from the sensor frame to the global frame, and published to /jexo/task_cmd. 

4.8.2 Joystick Controller 

The JoystickController subscribes to /joy, and uses joystick input to directly command the 

task space velocity, publishing the commands to /jexo/task_cmd. Although it is implemented 

with the ForceTorqueSensorInterface, it does not use the force/torque readings, but was 

implemented this way so that the Controller Manager could be used to switch between 

admittance control and joystick control. 

4.9 JEXO Model 

JEXO is described using the Unified Robot Description Format (URDF), which is an XML 

format for modelling robots. The URDF is generated with Xacro, which is an XML macro 

language that makes the URDF easier to understand, modify, and reduces repetition. The key 

elements of the URDF are <link> and <joint>. The Gazebo simulator requires an additional 

<transmission> element, which tells Gazebo how this joint will be controlled. 

Each link of the robot requires a corresponding link element in the URDF, to describe the 

physical characteristics of the link. This includes the inertial properties, the visual mesh and 

material, and the collision mesh.  It also includes contact coefficients of friction, stiffness, 

and damping, which are used to compute collision behaviour in the simulation (ROS 2021).  
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Solidworks was used to compute the inertial properties and centre of mass for each link, 

which were then viewed in Gazebo to verify accuracy, shown in Figures 12 and 13. The 

actuators used have a significant weight, so they were modelled in the URDF as cylinders 

fixed at each joint. Actuator inertia was calculated as the inertia for a solid cylinder of the 

same size and weight. Details of these properties for each link and the actuators can be found 

in Appendix 3. 

 

Figure 12: Link centres of mass 



Luke Eyles | 12883423 Engineering Capstone Spring 2022 

27 

 

 

Figure 13: Link equivalent inertia 

Each joint of the robot is described in the joint tag of the URDF. Joints can be fixed, revolute, 

or prismatic. JEXO has a fixed joint connecting the first link to the world, revolute joints 

connecting links, fixed joints connecting the actuator masses to the links, and fixed joints 

connecting the handle and force/torque sensor to the last link. For each joint, joint limits of 

position, effort, and velocity are specified. Effort and velocity limits are specified according 

to the actuator specification sheet, at 26 Nm of maximum torque and 0.8 rad/s velocity. 

Dynamic properties of viscous damping and static friction can also be specified for joints, but 

as these properties are not given by the actuator specification sheet, they are estimated at 1.0 

Nms/rad and 0.5 Nm respectively.  

4.10 Gazebo Simulation 

Gazebo is a robotics simulation tool with integrated physics engines, which enables testing 

robotics control systems without access to the physical robot. Gazebo has been used for the 

majority of development in this project, as the physical robot was initially not working and 

required a control board replacement.  

The Gazebo ROS Control plugin provides a simulated hardware interface that can be 

connected to, instead of the real robot’s hardware interface (Figure 14). This makes 

development simple when using ROS Control, as the same controller can be used for both the 

simulation and the real robot.  
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Figure 14: Gazebo ROS Control integration diagram (Source: Open Source Robotics Foundation 2014) 

To use Gazebo ROS Control, the <transmission> element must be added to the robot’s URDF 

file to specify the transmission type and hardware interface provided by each joint. 

Unfortunately, a limitation of Gazebo is that it cannot provide both a Position and Velocity 

joint interface for the same joint. To work around this, the interface type was parameterised 

in Xacro so that the interface type can be specified in the launch file. This means that either a 

Position or Velocity joint interface can be used as required, but both interfaces cannot be 

provided at the same time. 

When the joint controllers for the Gazebo simulation are loaded, Gazebo throws a soft error 

of “No p gain specified for pid”. These PID gains are used by Gazebo to compute an effort to 

control the joints. When the PID gains are not provided, Gazebo instead directly controls the 

velocity or position of the joint, depending on the interface. The PID gains have not been 

included as the real robot has embedded joint controllers that accurately control the position 

and velocity of the joints, so it is not required to simulate these controllers if they can be 

assumed to be accurate. 



Luke Eyles | 12883423 Engineering Capstone Spring 2022 

29 

 

4.11 MATLAB Model 

A model of the robot was created in MATLAB using Peter Corke’s Robotics Toolbox. The 

use of MATLAB enabled testing and visualisation of control algorithms before 

implementation in C++. The MATLAB model is defined by the DH parameters of the robot, 

which are outlined in Table 4.3. Figures 15 and 16 show a comparison between the wireframe 

model using the DH parameters, and the model with the mesh applied. Figure 15 makes it 

visually apparent that the axes of rotation of all joints in the shoulder intersect at the same 

point, which isn’t immediately obvious looking at the mesh model of the robot in Figure 16. 

 

Figure 15: Wireframe MATLAB model 
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Figure 16: MATLAB model with mesh applied 

Table 4.3: JEXO DH Parameters (Carmichael & Liu n.d.) 

Joint d (m) a (m) alpha (rad) 

1 0 0 0.661 

2 0 0 1.3055 

3 0 0 0.6702 

4 -0.095 0.275 3.1416 

5 -0.095 0.283 -1.5708 

 

The MATLAB model was used to verify the swivel angle calculation before implementing in 

C++, shown in Figure 17. MATLAB enabled visualisation of the calculation steps, which 

helped with understanding the reasoning behind each step and checking that the result was 

correct. 
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Figure 17: Swivel angle optimisation visualised in MATLAB 

5 Results 

5.1 Controller Architecture 

Figures 18 and 19 are diagrams of the exoskeleton controller architecture, similar to the ROS 

Control flow diagram in Figure 10. They show the data flow within the control system, and 

illustrate where the simulator diverges from the real system at the Hardware Interface level.  

Figure 18 shows the joint control system, which contains the joint controllers, the JEXO 

Hardware Interface, and the Gazebo Simulator Hardware Interface. 

Figure 19 shows the task control system, which contains the task controllers, the NetFT 

Hardware Interface, and the Force Torque Simulator Hardware Interface. 
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Figure 18: Joint space control system diagram 

 

Figure 19: Task space control system diagram 
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5.2 Demonstration 

To start JEXO, the following launch file is used: 

roslaunch jexo_bringup load_controllers.launch sim:=<false/true> 

The “sim” argument tells the launch file whether to start the simulation or the real robot. If 

“sim” is true, it will load the robot in Gazebo and start the force/torque simulator. If it is 

false, it will start the real robot’s hardware interface and the hardware interface for the real 

force/torque sensor. 

The launch file will then load the available joint and task controllers and their corresponding 

parameters. All controllers are loaded as stopped, except the joint_states_controller, as joint 

states are required to visualise the robot in RViz. The launcher will also load the collision 

detection and joint velocity estimator nodes.  

 

Figure 20: Initial position of the robot after launching load_controllers.launch 

After loading the controllers, another launch file can be called to start a set of controllers: 

roslaunch jexo_bringup switch_controller_group.launch controller:=<controller 

configuration> 

The controller configurations available are: 

• admittance: This loads the admittance controller which implements the force/torque 

sensor hardware interface to publish task space commands. It also loads the cartesian 

controller, which subscribes to the task space commands and computes the joint 

velocities to send to the JEXO hardware interface. 
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• linear_jog: This loads a controller which publishes the joystick input as task space 

commands. Similar to the admittance configuration, it then controls the joint velocity 

using the cartesian controller. 

• joint_jog: This loads the joint velocity controller, which takes input from the joystick 

to control the velocity of individual joints. 

• joint_position: This loads the joint position controller, which allows directly setting 

the joint positions by publishing to the joint command topic via the “rostopic pub” 

command. 

To demonstrate, after running the load_controllers.launch file, the “linear_jog” controller 

group was loaded with: 

roslaunch jexo_bringup switch_controller_group.launch controller:=linear_jog 

A green marker appears, showing the position of the mouth used for the swivel angle 

calculation, and the robot starts swivelling to the optimal angle calculated while maintaining 

the same end effector position. 

 

Figure 21: Position of the robot after starting the "linear_jog" controller configuration 

The position of the robot is then controllable via a joystick. The figures below show the 

dexterity of the robot, reaching a wide range of positions while moving in a way that is 

natural to the human arm.  
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Figure 22: Positions reached in "linear_jog" mode, controlling the robot with a joystick 

 

Figure 23: More positions reached in "linear_jog" mode 

To switch the controller, the switch_controller_group.launch file simply needs to be called 

again with the desired controller configuration. In this demonstration, the “admittance” 

controller group was loaded with: 

roslaunch jexo_bringup switch_controller_group.launch controller:=admittance 

The robot is then controlled using the admittance controller, in this case using force 

computed from the simulated force/torque sensor. The red marker shows the location of the 

hand, and the green arrow shows the force exerted by the hand on the end effector. 
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Figure 24: Robot controlled in "admittance" control mode 

 

Figure 25: Robot controlled in "admittance" control mode 

The switch_controller_group launch file uses the controller group feature of the controller 

manager (ROS 2019), which allows the user to define sets of controllers that are started and 

stopped as a group. When a controller group is spawned, the controllers in that group are 

started and controllers in other groups are stopped. 

Controllers can also be switched manually via service calls to 

/controller_manager/switch_controller, but using the switch_controller_group launch file 

ensures that controllers are compatible and that there are no conflicts between controllers. 
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6 Conclusion 

In this project, the JEXO exoskeleton control system was updated to use the ROS Control, a 

modular system that enables robot controllers to be separated from the hardware. Robot 

Hardware Interfaces were created for the real exoskeleton, the NetFT force/torque sensor, and 

a simulated force/torque sensor. The exoskeleton’s control system was separated into two 

components, the task space control and the joint space control.  

Two task controllers were implemented to publish task commands: 

• AdmittanceController takes input from the force torque sensor and models the robot 

as an admittance to compute desired end effector velocity.  

• JoystickController commands the velocity of the end effector directly using joystick 

input. 

Four joint controllers were implemented to interface with the exoskeleton’s joints: 

• The JointVelocityController uses joystick input to directly set the joint velocity.  

• The CartesianController takes task velocity commands, and uses the task space 

augmentation method to resolve the robot’s redundancy and compute the joint 

velocities.  

• The JointPositionController uses the exoskeleton’s PositionJointInterface to 

command the joint positions, with input from the /joint_cmd topic.  

• The JointStateController publishes the robot’s joint states, which include position and 

velocity data. 

Launch files were created to streamline the process of running the hardware interfaces, 

loading the controllers, and switching between different controllers. 

Gazebo was used to simulate the robot, and the use of ROS Control enabled controlling the 

Gazebo simulation with the same controllers as the real robot. The simulation allows 

programming and preliminary testing of control algorithms without requiring access to the 

physical exoskeleton, which improves productivity when performing final testing on the real 

robot. 

Detailed documentation was created for the codebase to improve its maintainability, improve 

ease of use, and reduce the time for future developers to understand the control software and 

add to the codebase.  
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Overall, this project has achieved its aims set out in Section 1.1, and has added to the 

functionality of JEXO as a research platform. 

6.1 Future Work 

JEXO has multiple wrist configurations that were not implemented in this project. Future 

work could implement these wrist configurations as separate Robot Hardware Interfaces, and 

combine them using the ROS Control Combined Robot HW class (ROS 2016). This class 

combines multiple hardware interfaces into a single interface, making controllers see the 

provided joints of all Robot HWs as belonging to a single robot (Belyaev 2021). 

Future work could also be done to improve the accuracy of the simulation, by comparing 

exoskeleton behaviour in the simulation and reality and modifying parameters so that the 

simulation better matches reality. Motor parameters of damping and friction defined in the 

URDF were assumed as there was no data available on these parameters, so experiments 

could be performed on the motors to characterise the motor damping and inertia and further 

increase the simulation accuracy. 

With respect to the admittance controller, an inertia parameter could be incorporated, and the 

solution proposed by Dimeas and Aspragathos (2016) of dynamically altering the inertia of 

the admittance controller to improve stability could be implemented. This would improve the 

responsiveness of the exoskeleton while mitigating any oscillations. Additionally, if there is 

future capability for the user to be strapped into the exoskeleton, the admittance controller 

could also compensate for the weight of the user’s arm due to gravity, which would improve 

its function as a rehabilitative device. 

For the swivel angle control, the method proposed by Kim & Roldan et al. (2012) could be 

implemented to improve the accuracy of the swivel angle while in motion. The 

jexo_kinematics package also provides a method to compute the manipulability gradient of 

the shoulder, which was not implemented into a joint controller due to time constraints. A 

joint controller could be created using the manipulability gradient with the gradient projection 

method discussed in Section 2.2.2, and this controller could be compared against the original 

controller to determine whether it exhibits better singularity avoidance behaviour. If it does, 

the robot could potentially monitor whether it is close to a singularity, and switch controllers 

depending on the proximity to a singularity. 
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Appendices 

Appendix 1: Kinova Support email 

From: "Kinova Support" 

Sent: 2022-09-06 11:22:10 

To: Luke.Eyles@student.uts.edu.au 

Subject: RE: Fwd: Backwards compatibility of Jaco API 

Hello Luke, 

The GEN1 and GEN2 Jaco use the same API, however, it is possible that certain functions 

won't work on your original JACO if your firmware version is not up to date. 

Of course, some features simply won't be available on your harware. 

The GEN3 API is simply not compatible with it. 

Sincerely 

Éric Linglet 

Customer Support 

Appendix 2: Actuator Specifications 

Kinova actuator specifications (Source: Kinova n.d.) 

Specification Value 

Diameter 74.5 mm 

Height 67 mm 

Input/output fasteners M4x5mm screws 

Weight 0.64 kg 

Absolute position accuracy +/- 0.5 degree 

Relative position accuracy +/- 0.05 degree 

Motor type 24V Brushless DC 

Maximum velocity 8 RPM 

Torque (continuous) 15 Nm 

Torque (peak) 26 Nm 

 

mailto:Luke.Eyles@student.uts.edu.au
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Appendix 3: Exoskeleton Component Properties 

 Mass, inertia, and centre of mass for exoskeleton components used in URDF 

 Inertia matrix diagonals (kg m2) Centre of mass (m) 

Link Mass 

(kg) 

Ixx Iyy Izz x y z 

Link 0 16.085 0.2489 0.9602 0.7191 0 0 0.32739 

Link 1 1.425 0.009816 0.01068 0.002731 0 -

0.08439 

0.23581 

Link 2 3.725 0.04883 0.02890 0.02859 0 -

0.10732 

0.15822 

Link 3 1.064 0.004657 0.005665 0.001668 0 -

0.05292 

 

Link 4 1.752 0.002533 0.02548 0.02755 0.185 0 0.14015 

Link 5 2.120 0.01495 0.04711 0.04430 0.19483 0.04599 0.1 

Actuator 0.640 0.0004614 0.0004614 0.0004440 0 0 0 

 

Appendix 4: GitLab Repository Link 

The repository for the codebase created during this project can be found at: 

https://code.research.uts.edu.au/12883423/jexo 

https://code.research.uts.edu.au/12883423/jexo

