

University of Technology, Sydney

Faculty of Engineering and Information Technology

DEVELOPMENT OF IMPROVED CONTROL SOFTWARE FOR THE

JEXO EXOSKELETON ROBOT

by

Luke Eyles

Student Number: 12883423

Project Number: SPR-22-09582

Major: Mechanical and Mechatronic Engineering

Academic advisor: Dr Marc Carmichael

A 12 Credit Point Project submitted in partial fulfillment of the requirement for the Degree of

Bachelor of Engineering

7 November 2022

Luke Eyles | 12883423 Engineering Capstone Spring 2022

i

Statement of originality

I declare that I, Luke Eyles, am the sole author of this report. Any fragments of text or

programming code from other sources have been used only with proper acknowledgement.

Any theories, results, and designs of others have been appropriately referenced and all

sources of assistance have been acknowledged.

Luke Eyles

7 November 2022

Luke Eyles | 12883423 Engineering Capstone Spring 2022

ii

Abstract

Development of New Control Software for the JEXO Exoskeleton Robot

Luke Eyles | SPR-22-09582

Supervisor: Dr Marc Carmichael

Major: Mechanical and Mechatronic Engineering

The UTS Robotics Institute developed an upper limb exoskeleton robot, JEXO. This robot

was built to be a research platform to test control algorithms related to human-robot

interaction. However, the robot’s control software became outdated, having been authored in

2014 and not receiving any updates since 2017. It also lacked consistent documentation,

making it time-consuming for newcomers to the project to develop a complete understanding

of the software. There was also no way to test new software without access to the physical

robot, compounding this problem.

In this project, the JEXO codebase was updated using modern ROS features and best practice

conventions to improve maintainability, robustness, and ease of use when implementing new

control systems. The theory behind the control systems implemented in the existing code was

analysed, and alternative control strategies were researched in a literature review.

A simulation was developed to enable programming and testing control algorithms without

requiring access to the physical exoskeleton. The Gazebo simulator was used together with

integration from ROS Control. The architecture of ROS Control decouples controllers from

the hardware, which enables the same controllers to be used for both the real robot and the

simulation.

Detailed documentation has been created for the new codebase. Together with the improved

modularity, this allows future controllers to be developed more easily as it reduces the time to

learn and understand the control software. Overall, the work of this project has improved the

functionality of JEXO as a research platform.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

iii

Acknowledgement

I would like to thank my supervisor Dr Marc Carmichael, for his advice and guidance

throughout this project.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

iv

Table of Contents
Statement of originality... i

Abstract .. ii

Acknowledgement ... iii

List of Tables ... vii

Nomenclature ... viii

List of Abbreviations ... viii

1 Introduction .. 1

1.1 Project Scope ... 1

1.2 Context and Impact ... 2

2 Literature Review... 3

2.1 Task Space Control ... 3

2.2 Redundant Robot Control ... 4

2.2.1 Task Space Augmentation ... 5

2.2.2 Gradient Projection .. 5

2.2.3 Enforcing joint limits ... 7

2.2.4 Swivel Angle Control .. 8

3 Original JEXO Design ... 9

3.1 JEXO Hardware Design .. 9

3.2 JEXO Control System ... 11

3.2.1 Admittance Controller ... 11

3.2.2 Redundancy Resolution ... 12

3.2.3 Swivel Angle Control .. 12

3.2.4 Joint Velocity Calculation.. 14

3.3 Package Structure .. 15

4 Implementation .. 16

4.1 Package Structure .. 16

Luke Eyles | 12883423 Engineering Capstone Spring 2022

v

4.2 Kinematics ... 17

4.2.1 Optimal Swivel Angle Calculation .. 18

4.2.2 Joint Velocity Calculation.. 19

4.3 ROS Control .. 19

4.3.1 Advantages ... 20

4.4 JEXO Hardware Interface ... 21

4.5 Joint Controllers .. 22

4.5.1 Joint Velocity Controller.. 23

4.5.2 Cartesian Controller ... 23

4.5.3 Joint Position Controller .. 23

4.5.4 Joint State Controller ... 23

4.6 Force Torque Sensor Hardware Interface ... 23

4.7 Force Torque Sensor Simulator... 24

4.8 Task Controllers .. 25

4.8.1 Admittance Controller ... 25

4.8.2 Joystick Controller ... 25

4.9 JEXO Model .. 25

4.10 Gazebo Simulation .. 27

4.11 MATLAB Model ... 29

5 Results .. 31

5.1 Controller Architecture ... 31

5.2 Demonstration ... 33

6 Conclusion ... 37

6.1 Future Work .. 38

References .. 39

Appendices ... 44

Appendix 1: Kinova Support email ... 44

Luke Eyles | 12883423 Engineering Capstone Spring 2022

vi

Appendix 2: Actuator Specifications ... 44

Appendix 3: Exoskeleton Component Properties .. 45

Appendix 4: GitLab Repository Link .. 45

List of Figures
Figure 1: JEXO exoskeleton arm ... 1

Figure 2: Admittance controller diagram (Source: Dimeas and Aspragathos 2016) 4

Figure 3: Simulation of redundant robot control for higher flexibility (Source: Dubey & Luh

1987) .. 6

Figure 4: Manipulability ellipsoid (Kim et al. 2011) ... 8

Figure 5: JEXO control system overview .. 11

Figure 6: Swivel angle reference frame ... 13

Figure 7: Swivel angle and desired swivel angle ... 13

Figure 8: Swivel angle reference frame ... 18

Figure 9: Current and optimal swivel angle in the swivel angle reference frame 19

Figure 10: ROS Control Flow Diagram (Source: ROS 2014) ... 20

Figure 11: Admittance control using the force/torque sensor simulator.................................. 24

Figure 12: Link centres of mass ... 26

Figure 13: Link equivalent inertia.. 27

Figure 14: Gazebo ROS Control integration diagram (Source: Open Source Robotics

Foundation 2014) ... 28

Figure 15: Wireframe MATLAB model .. 29

Figure 16: MATLAB model with mesh applied .. 30

Figure 17: Swivel angle optimisation visualised in MATLAB ... 31

Figure 18: Joint space control system diagram .. 32

Figure 19: Task space control system diagram .. 32

Luke Eyles | 12883423 Engineering Capstone Spring 2022

vii

Figure 20: Initial position of the robot after launching load_controllers.launch 33

Figure 21: Position of the robot after starting the "linear_jog" controller configuration 34

Figure 22: Positions reached in "linear_jog" mode, controlling the robot with a joystick 35

Figure 23: More positions reached in "linear_jog" mode .. 35

Figure 24: Robot controlled in "admittance" control mode ... 36

Figure 25: Robot controlled in "admittance" control mode ... 36

List of Tables

Table 3.1: Nano25 sensing range and resolution (Source: ATI Industrial Automation 2010) 10

Table 3.2: Original software package summary .. 15

Table 4.1: Summary of ROS packages implemented .. 16

Table 4.2: Hardware Interface loop rate API comparison ... 22

Table 4.3: JEXO DH Parameters (Carmichael & Liu n.d.) ... 30

Luke Eyles | 12883423 Engineering Capstone Spring 2022

viii

Nomenclature

𝑞 Column vector of robot joint positions

�̇� Column vector of robot joint velocities

𝑥 Column vector of task space position

�̇� Column vector of task space velocity

𝐽 Kinematic Jacobian

𝐽𝐴 Augmented kinematic Jacobian

𝐽† Moore-Penrose pseudoinverse of the Jacobian

𝜙 Swivel angle

List of Abbreviations

DOF: Degree of freedom

JEXO: Jaco EXOskeleton

RI: Robotics Institute

UTS: University of Technology Sydney

ROS: Robot Operating System

Luke Eyles | 12883423 Engineering Capstone Spring 2022

1

1 Introduction

The Robotics Institute (RI) at UTS has a custom robotic exoskeleton arm called JEXO

(Figure 1). This exoskeleton serves as a research platform for human-robot interaction control

algorithms. This research could further exoskeleton rehabilitation for patients who have lost

strength or range of motion of their upper arm, or be utilised in industrial applications to

enhance normal human strength and reduce risk of injury.

Figure 1: JEXO exoskeleton arm

The control software for JEXO was programmed in C++ using the Robot Operating System

(ROS), which is an open source set of libraries and tools for robotic applications. The

exoskeleton control software can be broken into two main parts. The first is the admittance

controller, which takes input from the force/torque sensor on the handle of the robot and

commands the velocity of the end effector of the robot in the task space. This required

movement is then fed into the joint controller, which computes how to move the joints of the

robot to execute the desired task.

1.1 Project Scope

The primary aims of this project are to implement a simulation of the exoskeleton so that

development can be done outside the lab, to improve the codebase to facilitate later research

projects, and to investigate alternative control solutions for potential future implementation.

With the original exoskeleton control software, there is no capability for testing without

access to the physical robot. Implementing a simulation expedites future development by

Luke Eyles | 12883423 Engineering Capstone Spring 2022

2

enabling immediate testing of any changes on the simulation, reducing time spent in the lab

working out errors. This also enables people to work on the exoskeleton simultaneously,

improving its value as a research platform.

The codebase can be improved by implementing best practice principles of documentation,

modularity, and reusability. Current documentation is sparse, so building a well-documented

codebase will reduce the time for newcomers to understand and add to the code. The software

is also outdated, being built using Robot Operating System (ROS) Indigo, which was released

in 2014. The codebase should be updated to ROS Noetic, the most recent version of ROS, to

ensure compatibility with recent ROS packages and enable use of current ROS features.

The current admittance controller on the JEXO exoskeleton arm only uses the damping

parameter, so the end effector velocity is simply proportional to the input force. This means

that there is an inherent trade-off between stability and force required. This project

investigates alterative admittance control methods, and recommends one to implement.

JEXO is a redundant robot, having five joints but only being controlled in the task space

along three axes. The current redundant joint controller uses task space augmentation to

choose the solution, adding one constraint task to solve for the redundancy in the shoulder

and another constraint task to choose the optimal swivel angle of the elbow. However, there

are many other methods of redundant robot control that can be used to optimise for different

parameters, such as singularity avoidance, minimum joint velocity, avoidance of joint limits,

and collision avoidance. This project investigates other potential redundant joint controllers

that could be implemented on JEXO.

1.2 Context and Impact

The societal impact that a rehabilitative exoskeleton arm would have is to increase access to

physical therapy for those who require it, due to injuries or other conditions such as a stroke.

According to the ABS (2012), 1.8% of Australians have suffered from a stroke, with 35% of

those having an impairment that lasts for six months or longer because of this. There is

therefore a large population of people who would benefit from using a rehabilitative

exoskeleton arm.

Strokes can cause muscle weakness, fatigue, muscle tightness, and muscle contractures in the

arms. Physical therapy is needed to assist with recovery, helping to achieve functional levels

before the stroke and preventing deterioration (López-Liria et al. 2016). One of the most

Luke Eyles | 12883423 Engineering Capstone Spring 2022

3

effective types of physical therapy for the upper limbs is task-oriented training, where the

patient repeatedly trains performing everyday tasks (Van Peppen et al. 2004). A rehabilitative

arm exoskeleton can assist with this type of training. Training is most effective when there is

a high level of transparency, meaning that the task should be clear to the patient and the robot

should not force the patient to move in a particular way (Nathanael et al. 2014).

2 Literature Review

A literature review was performed on current methods of exoskeleton control. The review

was split into two components, admittance control strategies in the task space, and redundant

robot control methods to map desired task space velocities to joint space velocities.

2.1 Task Space Control

The most common approach to exoskeleton control in the task space is admittance control. In

this system, the exoskeleton is treated as a mechanical admittance, mapping a force input to a

motion output (Figure 2). The exoskeleton is modelled as a mass-damper system, which can

be described by:

𝑚�̈� + 𝑐�̇� = 𝐹

Stiffness in the environment can cause instability, so the parameters of the controller need to

be tuned to ensure the exoskeleton is stable and accurate but does not require a large amount

of effort to use.

Dimeas and Aspragathos (2016) designed a controller where the admittance control gains

were dynamically changed during operation to maintain stability while being highly

responsive. They did this by monitoring for high frequency force oscillations and increasing

the virtual inertia when more stability is needed, as they found that it was better to increase

the inertia parameter than the damping parameter to increase stability while minimising the

effort required from the operator.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

4

Figure 2: Admittance controller diagram (Source: Dimeas and Aspragathos 2016)

The EXO-UL7 7 DOF upper limb exoskeleton developed by UCSC used PID admittance

control and applied the relation: 𝑥�̇�(𝑠) = (𝑀𝑎𝑠 + 𝐵𝑎 + 𝐷𝑎/𝑠)𝑓𝑑(𝑠) (Yu et. al. 2011). Their

exoskeleton has 3 force/torque sensors at the upper arm, lower arm, and hand, which are

combined using a weighted sum to the single command signal 𝑓𝑑. To determine the control

parameters, they modelled the human impedance system and developed tuning rules for the

admittance controller based on the human impedance.

Another exoskeleton is the 5 DOF MGA Exoskeleton, which is a rehabilitative exoskeleton

for which Carignan et al. (2007) developed a modular control system. The control system

takes in force and torque input from a sensor at the hand, and force input from two sensors at

the elbow. The modularity of the system means it can be configured to change between

impedance control and admittance control for different joint groups. The system was

modelled as a pure damper when in admittance control mode, with linear damping set to 250

N/m/s during a path following task.

2.2 Redundant Robot Control

The admittance controller for the robot gives a desired velocity in the task space. To control

the joints of the robot, this task space velocity needs to be mapped to a joint space velocity.

The equation for the end effector velocity given the velocity of the joints is �̇�(𝑞) = 𝐽�̇�, where

�̇� is a column vector of the end effector velocity in the task space, 𝐽 is the Jacobian matrix,

and �̇� is a column vector of joint velocities. For a given task space velocity on a redundant

robot, there are infinite solutions for �̇�, so the challenge is in choosing the best solution.

There are many different methods of solving this problem that allow for optimising different

factors, such as singularity avoidance, joint limit avoidance, obstacle avoidance, reducing the

joint torques, and reducing the potential energy of the robot’s posture. These methods can be

Luke Eyles | 12883423 Engineering Capstone Spring 2022

5

divided into two main approaches to solving the inverse kinematics for a redundant robot,

task space augmentation and gradient projection.

2.2.1 Task Space Augmentation

One method of controlling redundant robots is task space augmentation, which is the current

method used on the JEXO. Task space augmentation is where one or more constraint tasks

are added to the task space, making the number of task space parameters equal to the number

of joints. The added constraint makes the number of possible solutions finite so that the joint

velocities can be solved for.

According to Siciliano (1989), the augmented task space can be characterised as:

𝑥𝐴 = [
𝑥
𝑦] = [

𝑓(𝑞)

𝑓𝑦(𝑞)
]

With x being the original task, y being the constraint task, f(q) being the forward kinematic

function, and fy(q) being the constraint task function. Differentiating this gives the augmented

Jacobian:

�̇�𝐴 = 𝐽𝐴(𝑞)�̇�

Using task space augmentation, it is possible to encounter problems where it is not possible to

perform both the original task and the constraint task (Chiacchio et al. 1991), causing an

algorithmic singularity. To solve this, a task priority strategy utilising the null space of the

Jacobian can be developed so that the constraint task does not interfere with the original task.

Chiacchio considers case studies where this strategy can be used to make the body of the

robot follow a path, make the robot maintain a dextrous configuration, or avoid an obstacle.

The EXO-UL7 at UCSC uses this approach to resolve the redundancy of their 7-DOF

exoskeleton arm. They defined one constraint task as 𝑥𝑎 = ℎ(𝑞), with the gradient of the

optimisation function ℎ̇(𝑞) chosen in the null space of the robot (Yu et al. 2011).

2.2.2 Gradient Projection

Another control strategy is the gradient projection method (Siciliano 1989). In this method,

an initial solution for �̇� is found by using the pseudoinverse of the Jacobian:

�̇� = 𝐽†(𝑞)�̇�

Luke Eyles | 12883423 Engineering Capstone Spring 2022

6

Then a term can be added to this solution that only moves the robot in the null space, and

does not change the movement of the end effector:

�̇� = 𝐽†(𝑞)�̇� + 𝑘[𝐼 − 𝐽†(𝑞)𝐽(𝑞)]𝑞0̇

By changing the value of 𝑞0̇, the pose of the robot can be adjusted in the null space. A cost

function can then be defined as ℎ(𝑞), and by setting 𝑞0̇ = ℎ̇(𝑞)𝑇, the cost function can be

maximised or minimised by setting 𝑘 positive for maximisation and negative for

minimisation. For example, one cost function used by Zghal, Dubey and Euler (1990)

optimises for minimal joint velocity by using the sum of squares of the joint velocities in the

cost function.

Another possible criterion is singularity avoidance. The gradient of the cost function for the

manipulability can be formulated numerically by iterating over each joint, and testing the

manipulability when the joint is moved forward or backward. The manipulability gradient

can also be computed symbolically using the DH parameters of the robot, using a recursive

method described by Park et al. (1999).

Dubey and Luh (1987) use the gradient projection method to optimise flexibility of a

redundant robot. They describe the manipulator velocity ratio, which is the ratio of the end

effector velocity norm to the joint velocity norm. The cost function is then defined as the

square of the manipulator velocity ratio along the minor axis of the manipulability ellipsoid,

which has the effect of heavily penalising large joint velocities along the direction of poorest

manipulability. The result of this optimisation on the motion of a three-link planar robot is

shown below.

Figure 3: Simulation of redundant robot control for higher flexibility (Source: Dubey & Luh 1987)

Luke Eyles | 12883423 Engineering Capstone Spring 2022

7

Liegeios (1977) formulated a cost function to achieve avoidance of joint limits, which pushes

the system to the centre point of each joint range and away from the limits:

ℎ(𝑞) =
1

𝑛
Σ𝑖=1

𝑛 (
𝑞𝑖 − 𝑞𝑖,𝑚𝑖𝑑

𝑞𝑖,𝑚𝑎𝑥 − 𝑞𝑖,𝑚𝑖𝑛
)

2

Obstacle avoidance can also be achieved. Khatib (1985) describes constructing an artificial

potential field, which exerts a repulsive force on the manipulator parts as a function of the

shortest distance from the part to the obstacle. The cost function can be set to minimise this

force.

Another paper by Huo and Baron (2008) considers two performance criteria, singularity

avoidance and avoidance of joint limits. They propose a combined performance criterion that

considers both of these tasks, and use gradient projection with the negative gradient of this

performance criterion to optimise the performance of a welding robot.

Tatlicioglu et al. (2008) develop a control strategy similar to the gradient projection method

for a quaternion-based controller. They define measures that can be used to optimise for the

sub task objectives of singularity avoidance, joint limit avoidance, bounding the impact

forces of the end effector, and bounding the potential energy of the robot. Instead of a

gradient-based approach, it is also possible to use these measures in a least-squares algorithm

(Tatlicioglu et al. 2009).

The step size 𝑘 of the null space term must be chosen large enough that the optimisation is

efficient, but not so large that the minimum cost point is skipped over (Siciliano et al. 2016).

This can be done using line search methods, such as Armijo’s rule.

2.2.3 Enforcing joint limits

A method of control for robots with hard joint constraints is Saturation in the Null Space

(Flacco et al. 2015). This algorithm is iterative, and starts by solving for the joint states to

satisfy a given task. It then checks if the constraint is exceeded and finds the joint that would

most exceed its position, velocity, or acceleration constraints. It then scales the desired task

down until the solution is within the joint’s constraints, and this process is repeated until all

joints are within constraints.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

8

2.2.4 Swivel Angle Control

The redundancy in the human arm is termed the “swivel angle”, which is the angle of the

elbow about the axis connecting the shoulder to the wrist.

One method of controlling the swivel angle was proposed by Kim et al (2011). This paper

hypothesised that a human orients their arm such that their palm can be most efficiently

retracted to the head. Efficiency of movement in a certain direction can be quantified using

the manipulability ellipsoid, shown in the figure below.

Figure 4: Manipulability ellipsoid (Kim et al. 2011)

To maximise efficiency of movement of the hand to the mouth, the projection of the longest

axis of the manipulability ellipsoid (σ1) onto the line connecting the mouth to the hand is

maximised. This means that the points of the mouth, shoulder, elbow, and wrist all lie on the

same plane. To test this, motion of subjects performing tasks was captured and compared

with the predicted swivel angle. An average of 5 degrees of error was found using this

method. Further testing found that using this method reduced the energy exchange between

the robot and user by 11.22%, with users exerting less force to perform the same task (Kim,

Miller et al. 2012). An extension of this method was proposed to estimate the dynamic swivel

angle based on a muscle model of the human arm (Kim, Roldan et al. 2012).

Another method proposed by Kang et al (2005) solved for the swivel angle by minimising the

total work done by joint torques. This paper found that joint trajectories matched subject arm

movements with an r2 generally > 0.98. However, in analysis of this method by Kim et al

(2012), it was found that this method did not accurately predict the position of the human arm

Luke Eyles | 12883423 Engineering Capstone Spring 2022

9

at low velocities. Due to gravity, the elbow would be located at the lowest possible position

when static, which is not accurate to the human arm.

Another paper by Wang et al (2019) examined participant arm motion while performing

reaching and grasping tasks. They found that the variation in swivel angle of the subjects was

small, with a standard deviation of 5 degrees. This paper proposes a simple approach to

resolve the redundancy by setting the swivel angle to the mean value measured, 155 degrees.

3 Original JEXO Design

3.1 JEXO Hardware Design

JEXO is a 5-DOF robot, with all joints being revolute (RRRRR). The shoulder is comprised

of four joints, which makes the shoulder assembly redundant, as four joints control the

rotation along three axes. This redundancy was built in to manage the singularities associated

with 3-joint gimbal mechanisms, which occur when all three joint axes lie on the same plane

(Carmichael & Liu n.d). The axes of rotation of each shoulder joint intersect at a common

point corresponding with the location of the shoulder joint of the user.

The shoulder mechanism was then optimised to maximise the upper limb reachable

workspace, while avoiding singularities and collisions with the user. This optimisation

defined the bend angles of each link and achieved a range of motion of 97.7% that of the

human arm.

JEXO was built using the actuators and joint controllers from the first generation Kinova

Jaco, connected with custom-made aluminium links. The specifications of the actuators are

detailed in Appendix 2.

The Kinova Jaco uses USB 2.0 to communicate with the main control system, and CAN bus

to communicate from the main controller to the joint controllers. The main control system

operates at a frequency of 100 Hz, and the CAN bus can transfer data at 1 Mb/s. When

operating at the maximum rate of 100 Hz, this gives a theoretical maximum of 2 kB per joint.

Specification Value

Control system frequency 100 Hz

CPU 270 MHz

CAN bus transfer speed 1 Mb/s

Luke Eyles | 12883423 Engineering Capstone Spring 2022

10

The Net F/T system is used to detect force at the end effector, which consists of a Nano25

force/torque sensor and a Net Box. The force/torque sensor is mounted using a quick release

camera mount to allow for easy attachment and detachment. M3x7mm bolts are used to

mount the sensor to the quick release plate, and M3x3.5mm bolts are used to mount the

handle to the sensor. The bolt holes are through holes, so the bolt depth must not be exceeded

as this can push the two plates of the sensor apart and damage the strain gauges (ATI

Industrial Automation 2010).

Table 3.1: Nano25 sensing range and resolution (Source: ATI Industrial Automation 2010)

 Sensing Range Resolution

Calibration Fx,Fy Fz Tx,Ty Tz Fx,Fy Fz Tx,Ty Tz

SI-125-3 125 N 500 N 3 Nm 3 Nm 1/48

N

1/16

N

1/1320

Nm

1/2640

Nm

SI-250-6 250 N 1000

N

6 Nm 3.4

Nm

1/24

N

1/8 N 1/660 Nm 1/1320

Nm

The force/torque sensor is communicated with via Net Box, which allows network

connection and configuration of the force/torque sensor.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

11

3.2 JEXO Control System

The control system for the arm consists of 3 controllers, as shown in Figure 5. This project

focuses on the first two controllers, the admittance controller and the redundant joint

controller.

Figure 5: JEXO control system overview

The admittance controller takes the force the user applies on the robot’s handle as input and

determines a cartesian velocity to drive the robot’s end effector to respond to this force.

The redundant joint controller takes the desired end effector velocity produced by the

admittance controller, and determines the joint velocities required to drive the end effector at

this velocity. JEXO has three degrees of freedom in the task space, which are linear motion in

the x, y, and z directions. There are two degrees of redundancy, one in the shoulder which

uses four joints to control rotation on three axes, and the swivel angle of the elbow about the

line connecting the shoulder to wrist. The redundant joint controller therefore must solve for

both the redundancy in the shoulder and the swivel velocity to achieve the linear velocity

specified by the admittance controller, while maintaining a high degree of manipulability and

avoiding collisions with itself or the user.

Once the desired joint velocity has been computed, the Jaco API is used to communicate the

command to the robot. The embedded joint controllers use PID control to control the output

motor torque.

3.2.1 Admittance Controller

The admittance controller models the end effector as a mechanical damper, where the

velocity of the end effector is proportional to the forces exerted on it. This is given by the

formula: 𝑐�̇� = Σ𝐹. A force torque sensor is used to measure force exerted by the user on the

Luke Eyles | 12883423 Engineering Capstone Spring 2022

12

end effector of the robot. The force measured is first transformed to the base frame of the

robot, and the desired linear velocity of the end effector is computed as:

�̇� = (𝐟𝐡 + 𝐟𝐞)/𝑐

Where 𝐟𝐡 is the force exerted by the hand, 𝐟𝐞 is the external force, and c is the damping

coefficient set to 100.

3.2.2 Redundancy Resolution

The constraint task currently used on JEXO is a kinematic constraint, where the velocity of

the second joint is set to be proportional to the velocity of the third joint. This constraint is

expressed as:

𝑞2 = 𝑎𝑞3 + 𝑏

𝑞2̇ = 𝑎𝑞3̇

Parameters a and b were determined in the optimisation process together with the joint

angles. The best solution found 𝑎 = −0.914 and 𝑏 = 5.5𝑜.

To ensure this constraint is satisfied, the constraint error is computed as: 𝑒 = 𝑎𝑞3 + 𝑏 − 𝑞2.

In the task space, a constraint velocity of 𝐾𝑐 ∗ 𝑒 is calculated to drive the constraint error

down. The constraint gain 𝐾𝑐 is most commonly set to 10.

3.2.3 Swivel Angle Control

The method used to control the swivel angle of JEXO is similar to the method proposed by

Kim et al (2012). This is implemented by first calculating the swivel axis 𝑡 as the unit vector

pointing from the shoulder to the wrist, 𝑡 =
𝑃𝑠−𝑃𝑤

|𝑃𝑠−𝑃𝑤|
. An orthogonal unit vector v to t is

computed as 𝑣 = 𝑛𝑜𝑟𝑚([𝑡𝑦, −𝑡𝑥, 0]). The cross product of v and t is then taken to complete

the swivel angle reference frame, with transformation matrix 𝑇𝑆𝐴.

𝑇𝑆𝐴 = [
𝑡 𝑢 𝑣 𝑃𝑠

0 0 0 1
]

Luke Eyles | 12883423 Engineering Capstone Spring 2022

13

Figure 6: Swivel angle reference frame

The position of the elbow 𝑃𝑒 is transformed into this reference frame, 𝑃𝑒,𝑆𝐴 = 𝑇−1𝑃𝑒. The

swivel angle is measured as:

ϕ = 𝑎𝑡𝑎𝑛2(−𝑃,𝑆𝐴,𝑦, 𝑃𝑒,𝑆𝐴,𝑧)

The position of the mouth is also transformed into this reference frame, 𝑃𝑚,𝑆𝐴 = 𝑇−1𝑃𝑚. The

optimal swivel angle is computed to be:

𝜙𝑜𝑝𝑡 = 𝑎𝑡𝑎𝑛2(𝑃𝑚,𝑆𝐴,𝑧, 𝑃𝑚,𝑆𝐴,𝑦)

Figure 7: Swivel angle and desired swivel angle

The Jacobian of the swivel angle is calculated by multiplying the swivel axis by the rotational

component of the Jacobian (Carmichael 2014):

𝑑ϕ

𝑑𝑞
= 𝑡 ∗ 𝐽ω

The swivel velocity is calculated to be proportional to the swivel error if the error is outside a

threshold.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

14

ϕe
̇ = 0.5𝑒𝑆𝐴 if |𝑒𝑆𝐴| > 0.005

In addition to this, a distance sensor is used to detect the user’s elbow and adapt the swivel

angle to reduce collisions with the elbow.

𝜙�̇� = 0.2(𝑑 − 40)

The total swivel velocity is:

ϕ̇ = ϕe
̇ + ϕṗ

3.2.4 Joint Velocity Calculation

As a result of the redundancy resolution, the augmented task space has 5 tasks: the original

tasks of linear velocity on the x, y, and z axes, and the added tasks of the kinematic constraint

velocity and swivel velocity.

𝑥�̇� =

[

�̇�
�̇�
�̇�

𝐾𝑐 ∗ 𝑒

ϕ̇]

The augmented Jacobian is:

𝐽𝐴 =

[

δ𝑥

δ𝑞1

δ𝑥

δ𝑞2

δ𝑥

δ𝑞3

δ𝑥

δ𝑞4

δ𝑥

δ𝑞5

δ𝑦

δ𝑞1

δ𝑦

δ𝑞2

δ𝑦

δ𝑞3

δ𝑦

δ𝑞4

δ𝑦

δ𝑞5

δ𝑧

δ𝑞1

𝛿𝑧

𝛿𝑞2

𝛿𝑧

𝛿𝑞3

𝛿𝑧

𝛿𝑞4

𝛿𝑧

𝛿𝑞5

0 1 −𝑎 0 0
δϕ

δ𝑞1

𝛿𝜙

𝛿𝑞2

𝛿𝜙

𝛿𝑞3

𝛿𝜙

𝛿𝑞4

𝛿𝜙

𝛿𝑞5]

The augmented Jacobian can be used to map velocities in the augmented task space to joint

velocities:

�̇�𝐴 = 𝐽𝐴�̇�

Joint velocities can then be computed by inverting the augmented Jacobian:

�̇� = 𝐽𝐴
−1�̇�𝐴

Luke Eyles | 12883423 Engineering Capstone Spring 2022

15

To ensure that joint velocities don’t exceed the rated speed of the joints, the maximum joint

velocity is checked. If this velocity exceeds the rated speed, the joint is set to the maximum

and other joints are scaled proportionally.

3.3 Package Structure

The original implementation of the JEXO control software is in C++ using ROS Indigo, and

consists of 13 ROS packages summarised in the table below.

Table 3.2: Original software package summary

Name Description

daq_snowboard Driver for the Arduino compatible platform Snowboard.

daq_dr2600 Driver for the USB-2600 series data acquisition board.

egismos_lrf Driver and services to query the Egismos laser range finder.

icra_exp Experiments related to the laser range finder.

jexo_control Nodes to compute reference velocity for the joints.

jexo_core Driver to communicate with the robot and URDF, SRDF, and

mesh files to describe the robot model.

jexo_msgs Message definitions.

jexo_wrist Node to publish joint states of the wrist assembly.

joint_velocity_estimator Nodes to smooth joint velocities by fitting a polynomial.

load_broadcaster Nodes to publish fixed wrench and wrench from a simulated

spring on the end effector.

netft Driver for the force/torque sensor.

path_node Data processing for touch sensor.

touch_node Data processing for touch sensor.

The main packages focused on for redesign are the jexo_control, jexo_core, and netft

packages.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

16

4 Implementation

This section outlines the decisions made and details behind the implementation of the

exoskeleton control software. Implementation involved deciding how to structure the ROS

packages, integrating ROS Control with the control system, using Gazebo for the simulation,

modelling the physical parameters of the robot, and modelling the robot in MATLAB.

Programming the control system was the largest part of this project, and involved creating

Robot Hardware Interfaces for the real robot, the force/torque sensor, and the simulated

force/torque sensor. Using Gazebo meant that Gazebo provided the hardware interface for the

simulated robot. Controllers were created to link with these hardware interfaces. The joint

controllers link to the exoskeleton hardware interfaces, and the task controllers link to the

force/torque sensor interfaces.

4.1 Package Structure

The ROS packages were organised according to best practice principles: that each package

should have a single purpose, a package should use the minimum number of dependencies,

and a package should be able to be rewritten without breaking other packages (Robotics

Back-End 2019). Packages are prefixed with “jexo” to avoid any naming conflicts with

existing packages. Table 4.1 outlines the package structure and the purpose of each package.

All packages are contained within a “jexo” metapackage, which also serves as the git

repository. This means that to install the JEXO packages, the steps are simply to clone the

repository in the “src” directory of the catkin_workspace, install dependencies via “rosdep

install jexo”, and then build.

Table 4.1: Summary of ROS packages implemented

Package Summary

ft_simulator Hardware interface to simulate a force/torque sensor. Provides

a joystick-controlled hand and simulates input to the

force/torque sensor to test admittance control without requiring

access to the physical robot.

jexo_bringup Launch files to initialise the robot and switch controller groups.

jexo_core Hardware interface for JEXO.

jexo_description URDF, SRDF, and mesh files for the robot model.

jexo_gazebo Gazebo configuration and launch files.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

17

jexo_joint_control ROS controllers that use the JEXO hardware interface to send

joint commands and receive joint states.

jexo_kinematics Computations for forward kinematics, kinematic Jacobian,

swivel angle, kinematic constraint, and augmented Jacobian.

jexo_msgs (unchanged) Message definitions.

jexo_task_control ROS controllers that use a force/torque hardware interface to

publish task space commands.

joint_velocity_estimator

(unchanged)

Nodes to smooth joint velocities by fitting a polynomial.

netft Hardware interface for the force/torque sensor.

ps4_teleop Definitions to map joystick inputs to the joy ROS message.

4.2 Kinematics

The jexo_kinematics package is designed to assist with the calculations related to the

exoskeleton’s kinematics. It uses the Orocos Kinematics and Dynamics Library (KDL) to

read the robot’s description and calculate the forward kinematics and Jacobian, and uses the

Eigen library for linear algebra computations.

Originally the jexo_kinematics package consisted of two executables, one to publish the

forward kinematics and one to publish the Jacobian. However, this created a large potential

latency in the use of the forward kinematics and Jacobian, as it would use the last available

joint_states message to compute these variables, and when the forward kinematics or

Jacobian were used, the control loop would also use the last available message. This means

that if the publishers were running at 60Hz, the Jacobian and forward kinematics could

potentially be up to 30ms behind the current joint state data.

Because of this, the package was changed to instead be a library that provides the

KinematicModel and KinematicConstraintSolver classes. Methods in these classes can be

called from inside the control loop, so that the controller can use the most recent data

possible.

The KinematicModel class provides KDL wrappers to compute the forward kinematics and

Jacobian directly from a joint_states message.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

18

4.2.1 Optimal Swivel Angle Calculation

The KinematicModel class also provides a method to compute the swivel error. The optimal

swivel angle is computed via the method proposed by Kim et al (2011), which maximises

movement of the hand to the mouth. This was done by first defining the swivel angle

reference frame, starting with the unit vector 𝑛 pointing from the wrist to the shoulder:

𝑛 =
𝑃𝑤 − 𝑃𝑠

|𝑃𝑤 − 𝑃𝑠|

The vector 𝑢 was chosen to point downwards, orthogonal to 𝑛, as it is intuitive to have zero

swivel angle when the elbow is at its lowest position. This was computed by setting a

downward vector 𝑎 = [0 0 −1]. The vector 𝑢 is:

𝑢 =
𝑎 − 𝑎 ⋅ 𝑛 ∗ 𝑛

|𝑎 − 𝑎 ⋅ 𝑛 ∗ 𝑛|

The final vector completing the swivel reference frame is calculated with the cross product,

𝑣 = 𝑛 × 𝑢.

Figure 8: Swivel angle reference frame

The current swivel angle ϕ is calculated by transforming the position of the elbow 𝑃𝐸 into the

swivel angle reference frame, which is the same as the original code.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

19

Figure 9: Current and optimal swivel angle in the swivel angle reference frame

The optimal swivel angle ϕ𝑜𝑝𝑡 is calculated by defining a vector f pointing from the wrist to

the mouth. The optimal swivel angle can then be calculated by:

𝑓′ = 𝑓 − 𝑓 ⋅ 𝑛 ∗ 𝑛

𝜙𝑜𝑝𝑡 = −𝑎𝑡𝑎𝑛2(𝑛 ⋅ (𝑓′ × 𝑢), 𝑓′ ⋅ 𝑢)

Finally, the swivel error is given by:

𝜙𝑒 = 𝜙𝑜𝑝𝑡 − 𝜙

4.2.2 Joint Velocity Calculation

The KinematicConstraintSolver class provides a method to calculate the joint velocity given

the current joint states and the desired task space velocity, using the same task space

augmentation method as the previous control system, outlined in Section 3.2.4.

4.3 ROS Control

ROS Control is a set of ROS packages designed to decouple controllers from the hardware of

the robot. This decoupling from the hardware was key in implementing the robot simulation,

as it enabled the same controllers to be used for both the real robot and simulation. The below

flow diagram provides an overview of the architecture and flow of data in ROS Control.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

20

Figure 10: ROS Control Flow Diagram (Source: ROS 2014)

At a high level, a hardware interface is created for the robot that provides the controllers

access to standardised interfaces. For example, the “JointStateInterface” will give access to

the robot’s current joint states, and the “EffortJointInterface” will allow the controller to send

effort commands.

The controllers run in a real time loop, using the hardware interface provided to respond to

inputs and control the robot. The controller can be specified using standardised interfaces,

meaning controllers can be made generic to any robot that provides the same interface.

Controllers are run through the controller manager. The controller manager can also load,

unload, and switch controllers, meaning different controllers can be used without needing to

stop and start a separate program.

4.3.1 Advantages

ROS Control was used for this project because it provides three main advantages. Firstly,

ROS controllers run in a real time loop, which reduces latency and increases the

responsiveness of the robot.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

21

Secondly, use of ROS control improves modularity and reusability through the set of

standardised interfaces. The capability for a controller to be used on any robot that provides a

compatible hardware interface means that the same controllers can easily be used on both the

real hardware and in simulation.

Thirdly, implementing the hardware interface enables switching controllers during runtime.

For example, the robot could first be jogged to a comfortable starting position, then the

operator could grasp the handle and switch to the admittance controller when they are ready.

4.4 JEXO Hardware Interface

The JEXO Hardware Interface is located in the jexo_core package. Originally, the robot

control software used the “jaco” node to receive joint commands through messages sent to

the /ref_vel topic, and interface with the API to forward these commands to the robot and

query the robot’s joint states. This was switched this to a ROS Control Robot Hardware

Interface for the advantages outlined in the section above.

The robot hardware interface implemented for JEXO provides three standardised interfaces,

the JointStateInterface which provides data from the robot’s joints, the VelocityJointInterface

which is used to command joint velocity, and the PositionJointInterface which enables

commanding joint position. The Kinova Jaco API is used to communicate with the robot’s

embedded controllers.

The read() function uses the GetAngularPosition API call to retrieve the joint positions. The

joint velocities are then calculated by dividing the change in position by the time between

position readings. The write() function uses the SendBasicTrajectory API call to command

the joint velocity or position. The hardware interface determines whether to command joint

velocity or position through the doSwitch() function, which checks which controllers are

loaded and sets an internal variable based on whether they are position or velocity controllers.

In the main loop, the hardware interface is created, and a ControllerManager is initialised

with the hardware interface to provide controllers with access to the hardware interface. A

separate AsyncSpinner thread is created to ensure callbacks are handled. The node then enters

a loop that reads the joint positions, updates the controller manager, and commands joint

velocities.

The main limiting factor in the loop rate of the main loop is the data rate in communicating

with the robot. Kinova Support verified that the Gen 1 and Gen 2 Jaco arms use the same

Luke Eyles | 12883423 Engineering Capstone Spring 2022

22

API, so a separate hardware interface using the newest API version was implemented and

tested to determine if there were any speed improvements between the two versions. Two

tests were run with each hardware interface, the first calling the getAngularPosition method

in the read() function and the second calling both the getAngularPosition and

getAngularForce methods. The main loop was run for 1 minute continuously in each case,

and the average loop frequency was calculated after this time. Unfortunately, there was no

significant difference in speed between new and old versions of API, with the new version

being marginally slower in both cases. The API version used was therefore left unchanged in

this project.

With no difference between the two API versions, this means that the CAN bus data rate is

the most likely factor limiting the loop rate. Improving this would require modifying the

firmware of the robot to optimise the data communicated, as each packet contains data

pertaining to the Jaco which is unnecessary for JEXO, such as finger position.

Table 4.2: Hardware Interface loop rate API comparison

API Version Mean loop rate with effort Mean loop rate without effort

6.1.0 (Gen 2) 140.7 Hz 188.0 Hz

5.0.1 (Gen 1) 140.8 Hz 188.3 Hz

4.5 Joint Controllers

Joint controllers are located in the jexo_joint_control package. The joint controllers take

commands from the ROS interface as input, and communicate with the JEXO hardware

interface to receive joint data and execute joint commands. The joint controllers implement

the controller interfaces corresponding to the standardised interfaces in the JEXO hardware

interface.

Controllers make use of two features of the Realtime Tools ROS Package, RealtimeBuffer

and RealtimePublisher. RealtimeBuffer is used in callbacks and operates similar to a mutex,

with the key difference being that writing to the buffer is done in non-real time, and reading

from the buffer is done in real time. This means that the update() loop of the controller can

function in real time, whereas if a mutex were used, the update() loop would be blocked when

the callback was writing to the variable. RealtimePublisher is a realtime safe wrapper for the

standard ROS Publisher, and allows publishing ROS messages from within the update loop.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

23

4.5.1 Joint Velocity Controller

The JointVelocityController implements the VelocityJointInterface to give direct control of

the velocity of each joint of the robot. The controller subscribes to the /joy topic so that a

joystick can be used to control the robot’s joints. In the update loop, it forwards the joystick

commands for each joint to the Controller Manager, which then communicates with the

hardware interface to move the robot.

4.5.2 Cartesian Controller

The CartesianController also implements the VelocityJointInterface. It subscribes to the

/jexo/task_cmd topic to get commands in the cartesian task space, and /jexo/joint_states to

receive the most recent joint information. In the update loop, it calculates the velocity to

command each joint of the robot, using the methods provided in the jexo_kinematics

package.

4.5.3 Joint Position Controller

The JointPosition controller implements the PositionJointInterface. It subscribes to the topic

/jexo/joint_cmd, and the command line can be used to publish to this topic. In the update

loop, it forwards these position commands to the Controller Manager.

4.5.4 Joint State Controller

The JointStateController is a fork of the Joint State Controller provided by ROS Control. The

original controller published joint states to the /joint_states topic, which could not be changed

as the remap node argument does not work on ROS Controllers, since they are not run as an

individual node but through the Controller Manager. The controller was modified to take the

topic name as a controller parameter, so that the controller can be configured to publish to

/joint_states_raw, which is then smoothed by the joint_velocity_estimator, which publishes

the smoothed joint states to /joint_states.

4.6 Force Torque Sensor Hardware Interface

The NetFTInterface is located in the netft package and provides the

ForceTorqueSensorInterface for the NetFT force/torque sensor. When the interface is

running, it communicates with the NetFT sensor over ethernet to query the force and torque

data. This data is used to update the Controller Manager, which makes the force and torque

data available to controllers that implement the ForceTorqueSensorInterface. As with the

Luke Eyles | 12883423 Engineering Capstone Spring 2022

24

original netft node, the NetFTInterface also provides a “bias” service, which can be called to

reset the force/torque readings to zero.

4.7 Force Torque Sensor Simulator

As the robot is velocity controlled, the position of the robot tends to drift slowly over time. In

reality, this error is corrected by the human operator exerting a small opposing force to the

direction it is drifting in. This force is fed through the admittance controller and then the joint

controller to correct the position of the exoskeleton.

To make the simulation behave closer to reality and to enable testing of admittance

controllers, the force torque sensor simulator was created with the ft_simulator package. It

works by simulating a human hand, modelling it as a spring-damper system to compute the

force exerted on the end effector. This is given by the equation 𝐹 = 𝑘𝑦 + 𝑐�̇�, where 𝑦 is the

distance to the end effector and �̇� is the difference between the velocity of the hand and the

velocity of the end effector.

The velocity of the virtual hand is operated by a joystick. The simulator uses the forward

kinematics of the robot to calculate the distance between the position of the hand and the

position of the robot’s end effector, then calculates a restoring force to pull the end effector

back to the position of the hand. This force is expressed in the reference frame of the end

effector so that it can be easily substituted by force from a force torque sensor on the real

robot’s end effector. The hand is visualised in RViz using a red marker and the force is

visualised using a green arrow, shown in Figure 11.

Figure 11: Admittance control using the force/torque sensor simulator

Luke Eyles | 12883423 Engineering Capstone Spring 2022

25

The force torque sensor simulator was implemented using ROS Control, with the simulator

providing a ForceTorqueSensorInterface. The task space controllers then implement this

interface.

4.8 Task Controllers

The task space controllers are located in the jexo_task_control package, and implement the

ForceTorqueSensorInterface. The task space controllers publish commands in the (x, y, z)

task space, which are input to the CartesianController to convert to joint space commands.

4.8.1 Admittance Controller

The AdmittanceController commands the task space velocity based on the force measured by

the force/torque sensor at the end effector. The task space velocity is computed by modelling

the exoskeleton as a mechanical admittance, using the same method outlined in Section 3.2.1.

An inertia parameter is passed to the controller, but unfortunately inertia could not be

implemented due to time constraints. Once calculated, the task space velocity is transformed

from the sensor frame to the global frame, and published to /jexo/task_cmd.

4.8.2 Joystick Controller

The JoystickController subscribes to /joy, and uses joystick input to directly command the

task space velocity, publishing the commands to /jexo/task_cmd. Although it is implemented

with the ForceTorqueSensorInterface, it does not use the force/torque readings, but was

implemented this way so that the Controller Manager could be used to switch between

admittance control and joystick control.

4.9 JEXO Model

JEXO is described using the Unified Robot Description Format (URDF), which is an XML

format for modelling robots. The URDF is generated with Xacro, which is an XML macro

language that makes the URDF easier to understand, modify, and reduces repetition. The key

elements of the URDF are <link> and <joint>. The Gazebo simulator requires an additional

<transmission> element, which tells Gazebo how this joint will be controlled.

Each link of the robot requires a corresponding link element in the URDF, to describe the

physical characteristics of the link. This includes the inertial properties, the visual mesh and

material, and the collision mesh. It also includes contact coefficients of friction, stiffness,

and damping, which are used to compute collision behaviour in the simulation (ROS 2021).

Luke Eyles | 12883423 Engineering Capstone Spring 2022

26

Solidworks was used to compute the inertial properties and centre of mass for each link,

which were then viewed in Gazebo to verify accuracy, shown in Figures 12 and 13. The

actuators used have a significant weight, so they were modelled in the URDF as cylinders

fixed at each joint. Actuator inertia was calculated as the inertia for a solid cylinder of the

same size and weight. Details of these properties for each link and the actuators can be found

in Appendix 3.

Figure 12: Link centres of mass

Luke Eyles | 12883423 Engineering Capstone Spring 2022

27

Figure 13: Link equivalent inertia

Each joint of the robot is described in the joint tag of the URDF. Joints can be fixed, revolute,

or prismatic. JEXO has a fixed joint connecting the first link to the world, revolute joints

connecting links, fixed joints connecting the actuator masses to the links, and fixed joints

connecting the handle and force/torque sensor to the last link. For each joint, joint limits of

position, effort, and velocity are specified. Effort and velocity limits are specified according

to the actuator specification sheet, at 26 Nm of maximum torque and 0.8 rad/s velocity.

Dynamic properties of viscous damping and static friction can also be specified for joints, but

as these properties are not given by the actuator specification sheet, they are estimated at 1.0

Nms/rad and 0.5 Nm respectively.

4.10 Gazebo Simulation

Gazebo is a robotics simulation tool with integrated physics engines, which enables testing

robotics control systems without access to the physical robot. Gazebo has been used for the

majority of development in this project, as the physical robot was initially not working and

required a control board replacement.

The Gazebo ROS Control plugin provides a simulated hardware interface that can be

connected to, instead of the real robot’s hardware interface (Figure 14). This makes

development simple when using ROS Control, as the same controller can be used for both the

simulation and the real robot.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

28

Figure 14: Gazebo ROS Control integration diagram (Source: Open Source Robotics Foundation 2014)

To use Gazebo ROS Control, the <transmission> element must be added to the robot’s URDF

file to specify the transmission type and hardware interface provided by each joint.

Unfortunately, a limitation of Gazebo is that it cannot provide both a Position and Velocity

joint interface for the same joint. To work around this, the interface type was parameterised

in Xacro so that the interface type can be specified in the launch file. This means that either a

Position or Velocity joint interface can be used as required, but both interfaces cannot be

provided at the same time.

When the joint controllers for the Gazebo simulation are loaded, Gazebo throws a soft error

of “No p gain specified for pid”. These PID gains are used by Gazebo to compute an effort to

control the joints. When the PID gains are not provided, Gazebo instead directly controls the

velocity or position of the joint, depending on the interface. The PID gains have not been

included as the real robot has embedded joint controllers that accurately control the position

and velocity of the joints, so it is not required to simulate these controllers if they can be

assumed to be accurate.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

29

4.11 MATLAB Model

A model of the robot was created in MATLAB using Peter Corke’s Robotics Toolbox. The

use of MATLAB enabled testing and visualisation of control algorithms before

implementation in C++. The MATLAB model is defined by the DH parameters of the robot,

which are outlined in Table 4.3. Figures 15 and 16 show a comparison between the wireframe

model using the DH parameters, and the model with the mesh applied. Figure 15 makes it

visually apparent that the axes of rotation of all joints in the shoulder intersect at the same

point, which isn’t immediately obvious looking at the mesh model of the robot in Figure 16.

Figure 15: Wireframe MATLAB model

Luke Eyles | 12883423 Engineering Capstone Spring 2022

30

Figure 16: MATLAB model with mesh applied

Table 4.3: JEXO DH Parameters (Carmichael & Liu n.d.)

Joint d (m) a (m) alpha (rad)

1 0 0 0.661

2 0 0 1.3055

3 0 0 0.6702

4 -0.095 0.275 3.1416

5 -0.095 0.283 -1.5708

The MATLAB model was used to verify the swivel angle calculation before implementing in

C++, shown in Figure 17. MATLAB enabled visualisation of the calculation steps, which

helped with understanding the reasoning behind each step and checking that the result was

correct.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

31

Figure 17: Swivel angle optimisation visualised in MATLAB

5 Results

5.1 Controller Architecture

Figures 18 and 19 are diagrams of the exoskeleton controller architecture, similar to the ROS

Control flow diagram in Figure 10. They show the data flow within the control system, and

illustrate where the simulator diverges from the real system at the Hardware Interface level.

Figure 18 shows the joint control system, which contains the joint controllers, the JEXO

Hardware Interface, and the Gazebo Simulator Hardware Interface.

Figure 19 shows the task control system, which contains the task controllers, the NetFT

Hardware Interface, and the Force Torque Simulator Hardware Interface.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

32

Figure 18: Joint space control system diagram

Figure 19: Task space control system diagram

Luke Eyles | 12883423 Engineering Capstone Spring 2022

33

5.2 Demonstration

To start JEXO, the following launch file is used:

roslaunch jexo_bringup load_controllers.launch sim:=<false/true>

The “sim” argument tells the launch file whether to start the simulation or the real robot. If

“sim” is true, it will load the robot in Gazebo and start the force/torque simulator. If it is

false, it will start the real robot’s hardware interface and the hardware interface for the real

force/torque sensor.

The launch file will then load the available joint and task controllers and their corresponding

parameters. All controllers are loaded as stopped, except the joint_states_controller, as joint

states are required to visualise the robot in RViz. The launcher will also load the collision

detection and joint velocity estimator nodes.

Figure 20: Initial position of the robot after launching load_controllers.launch

After loading the controllers, another launch file can be called to start a set of controllers:

roslaunch jexo_bringup switch_controller_group.launch controller:=<controller

configuration>

The controller configurations available are:

• admittance: This loads the admittance controller which implements the force/torque

sensor hardware interface to publish task space commands. It also loads the cartesian

controller, which subscribes to the task space commands and computes the joint

velocities to send to the JEXO hardware interface.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

34

• linear_jog: This loads a controller which publishes the joystick input as task space

commands. Similar to the admittance configuration, it then controls the joint velocity

using the cartesian controller.

• joint_jog: This loads the joint velocity controller, which takes input from the joystick

to control the velocity of individual joints.

• joint_position: This loads the joint position controller, which allows directly setting

the joint positions by publishing to the joint command topic via the “rostopic pub”

command.

To demonstrate, after running the load_controllers.launch file, the “linear_jog” controller

group was loaded with:

roslaunch jexo_bringup switch_controller_group.launch controller:=linear_jog

A green marker appears, showing the position of the mouth used for the swivel angle

calculation, and the robot starts swivelling to the optimal angle calculated while maintaining

the same end effector position.

Figure 21: Position of the robot after starting the "linear_jog" controller configuration

The position of the robot is then controllable via a joystick. The figures below show the

dexterity of the robot, reaching a wide range of positions while moving in a way that is

natural to the human arm.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

35

Figure 22: Positions reached in "linear_jog" mode, controlling the robot with a joystick

Figure 23: More positions reached in "linear_jog" mode

To switch the controller, the switch_controller_group.launch file simply needs to be called

again with the desired controller configuration. In this demonstration, the “admittance”

controller group was loaded with:

roslaunch jexo_bringup switch_controller_group.launch controller:=admittance

The robot is then controlled using the admittance controller, in this case using force

computed from the simulated force/torque sensor. The red marker shows the location of the

hand, and the green arrow shows the force exerted by the hand on the end effector.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

36

Figure 24: Robot controlled in "admittance" control mode

Figure 25: Robot controlled in "admittance" control mode

The switch_controller_group launch file uses the controller group feature of the controller

manager (ROS 2019), which allows the user to define sets of controllers that are started and

stopped as a group. When a controller group is spawned, the controllers in that group are

started and controllers in other groups are stopped.

Controllers can also be switched manually via service calls to

/controller_manager/switch_controller, but using the switch_controller_group launch file

ensures that controllers are compatible and that there are no conflicts between controllers.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

37

6 Conclusion

In this project, the JEXO exoskeleton control system was updated to use the ROS Control, a

modular system that enables robot controllers to be separated from the hardware. Robot

Hardware Interfaces were created for the real exoskeleton, the NetFT force/torque sensor, and

a simulated force/torque sensor. The exoskeleton’s control system was separated into two

components, the task space control and the joint space control.

Two task controllers were implemented to publish task commands:

• AdmittanceController takes input from the force torque sensor and models the robot

as an admittance to compute desired end effector velocity.

• JoystickController commands the velocity of the end effector directly using joystick

input.

Four joint controllers were implemented to interface with the exoskeleton’s joints:

• The JointVelocityController uses joystick input to directly set the joint velocity.

• The CartesianController takes task velocity commands, and uses the task space

augmentation method to resolve the robot’s redundancy and compute the joint

velocities.

• The JointPositionController uses the exoskeleton’s PositionJointInterface to

command the joint positions, with input from the /joint_cmd topic.

• The JointStateController publishes the robot’s joint states, which include position and

velocity data.

Launch files were created to streamline the process of running the hardware interfaces,

loading the controllers, and switching between different controllers.

Gazebo was used to simulate the robot, and the use of ROS Control enabled controlling the

Gazebo simulation with the same controllers as the real robot. The simulation allows

programming and preliminary testing of control algorithms without requiring access to the

physical exoskeleton, which improves productivity when performing final testing on the real

robot.

Detailed documentation was created for the codebase to improve its maintainability, improve

ease of use, and reduce the time for future developers to understand the control software and

add to the codebase.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

38

Overall, this project has achieved its aims set out in Section 1.1, and has added to the

functionality of JEXO as a research platform.

6.1 Future Work

JEXO has multiple wrist configurations that were not implemented in this project. Future

work could implement these wrist configurations as separate Robot Hardware Interfaces, and

combine them using the ROS Control Combined Robot HW class (ROS 2016). This class

combines multiple hardware interfaces into a single interface, making controllers see the

provided joints of all Robot HWs as belonging to a single robot (Belyaev 2021).

Future work could also be done to improve the accuracy of the simulation, by comparing

exoskeleton behaviour in the simulation and reality and modifying parameters so that the

simulation better matches reality. Motor parameters of damping and friction defined in the

URDF were assumed as there was no data available on these parameters, so experiments

could be performed on the motors to characterise the motor damping and inertia and further

increase the simulation accuracy.

With respect to the admittance controller, an inertia parameter could be incorporated, and the

solution proposed by Dimeas and Aspragathos (2016) of dynamically altering the inertia of

the admittance controller to improve stability could be implemented. This would improve the

responsiveness of the exoskeleton while mitigating any oscillations. Additionally, if there is

future capability for the user to be strapped into the exoskeleton, the admittance controller

could also compensate for the weight of the user’s arm due to gravity, which would improve

its function as a rehabilitative device.

For the swivel angle control, the method proposed by Kim & Roldan et al. (2012) could be

implemented to improve the accuracy of the swivel angle while in motion. The

jexo_kinematics package also provides a method to compute the manipulability gradient of

the shoulder, which was not implemented into a joint controller due to time constraints. A

joint controller could be created using the manipulability gradient with the gradient projection

method discussed in Section 2.2.2, and this controller could be compared against the original

controller to determine whether it exhibits better singularity avoidance behaviour. If it does,

the robot could potentially monitor whether it is close to a singularity, and switch controllers

depending on the proximity to a singularity.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

39

References

ATI Industrial Automation 2010, ‘ATI Industrial Automation: F/T Sensor Nano25’, www.ati-

ia.com, viewed 5 November 2022, <https://www.ati-

ia.com/products/ft/ft_models.aspx?id=Nano25>.

Australian Bureau of Statistics 2012, ‘Profiles of Disability, Australia’, www.abs.gov.au,

viewed 5 November 2022,

<https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4429.0main+features100262009>

.

Belyaev, I. 2021, ‘Writing CombinedRobotHW · ros-controls/ros_control Wiki’, GitHub,

viewed 7 November 2022, <https://github.com/ros-controls/ros_control/wiki/Writing-

CombinedRobotHW>.

Carignan, C., Tang, J., Roderick, S. & Naylor, M. 2007, ‘A Configuration-Space Approach to

Controlling a Rehabilitation Arm Exoskeleton’, 2007 IEEE 10th International

Conference on Rehabilitation Robotics, viewed 5 November 2022,

<https://ieeexplore.ieee.org/document/4428425>.

Carmichael, M. 2014, Admittance control.

Carmichael, M. & Liu, D. n.d., Biomechanical Model-based Optimal Design for a Novel 4-

Joint Shoulder Exoskeleton.

Chiacchio, P., Chiaverini, S., Sciavicco, L. & Siciliano, B. 1991, ‘Closed-Loop Inverse

Kinematics Schemes for Constrained Redundant Manipulators with Task Space

Augmentation and Task Priority Strategy’, The International Journal of Robotics

Research, vol. 10, no. 4, pp. 410–25, viewed 5 November 2022,

<https://journals.sagepub.com/doi/abs/10.1177/027836499101000409>.

Dimeas, F. & Aspragathos, N. 2016, ‘Online Stability in Human-Robot Cooperation with

Admittance Control’, IEEE Transactions on Haptics, vol. 9, no. 2, pp. 267–78,

viewed 5 November 2022,

<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7384497>.

Dubey, R. & Luh, J. 1987, ‘Redundant robot control for higher flexibility’, IEEE Xplore,

viewed 5 November 2022,

<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1087918>.

Dubey, R.V., Euler, J.A. & Babcock, S.M. 1991, ‘Real-time implementation of an

optimization scheme for seven-degree-of-freedom redundant manipulators’, IEEE

Luke Eyles | 12883423 Engineering Capstone Spring 2022

40

Transactions on Robotics and Automation, vol. 7, no. 5, pp. 579–88, viewed 5

November 2022, <https://ieeexplore.ieee.org/abstract/document/97869>.

Flacco, F., De Luca, A. & Khatib, O. 2015, ‘Control of Redundant Robots Under Hard Joint

Constraints: Saturation in the Null Space’, IEEE Transactions on Robotics, vol. 31,

no. 3, pp. 637–54, viewed 24 May 2022,

<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7097068>.

Huo, L. & Baron, L. 2008, ‘The joint‐limits and singularity avoidance in robotic welding’, J.

Franks (ed.),Industrial Robot: An International Journal, vol. 35, no. 5, pp. 456–64.

Jarrasse, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G. & Roby-Brami,

A. 2014, ‘Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm

Coordination in Stroke Patients’, Frontiers in Human Neuroscience, vol. 8, viewed 5

November 2022, <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249450/>.

Kang, T., He, J. & Helms Tillery, S.I. 2005, ‘Determining natural arm configuration along a

reaching trajectory’, Experimental Brain Research, vol. 167, pp. 352–61, viewed 7

November 2022, <https://link.springer.com/article/10.1007/s00221-005-0039-5>.

Khatib, O. 2019, ‘Real-time obstacle avoidance for manipulators and mobile

robots’, Proceedings. 1985 IEEE International Conference on Robotics and

Automation, viewed 5 November 2022,

<https://ieeexplore.ieee.org/document/1087247/>.

Kim, H., Miller, L.M., Al-Refai, A., Brand, M. & Rosen, J. 2011, ‘Redundancy resolution of

a human arm for controlling a seven DOF wearable robotic system’, Annual

International Conference of the IEEE Engineering in Medicine and Biology Society.

IEEE Engineering in Medicine and Biology Society. Annual International Conference,

pp. 3471–4, viewed 5 November 2022,

<https://pubmed.ncbi.nlm.nih.gov/22255087/>.

Kim, H., Miller, L.M., Li, Z., Roldan, J.R. & Rosen, J. 2012, ‘Admittance control of an upper

limb exoskeleton - Reduction of energy exchange’, IEEE Xplore, viewed 5 November

2022, <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6347475>.

Kim, H., Roldan, J.R., Li, Z. & Rosen, J. 2012, ‘Viscoelastic model for redundancy

resolution of the human arm via the swivel angle: Applications for upper limb

exoskeleton control’, IEEE Xplore, viewed 5 November 2022,

<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6347476&casa_token=msEZ

AfO5wf0AAAAA:uNzHetYXpBeqx8s0RHksFHq6WI83ZFfQHh177VX-

E7jS06gT0bJ6mSlw0CmNZdEjYhM47x9BJA>.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

41

Kinova n.d., Joints Specifications, Kinova Robotics.

Liegeois, A. 1977, ‘Automatic Supervisory Control of the Configuration and Behavior of

Multibody Mechanisms’, IEEE Transactions on Systems, Man, and Cybernetics, vol.

7, no. 12, pp. 868–71, viewed 5 November 2022,

<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4309644>.

López-Liria, R., Vega-Ramírez, F.A., Rocamora-Pérez, P., Aguilar-Parra, J.M. & Padilla-

Góngora, D. 2016, ‘Comparison of Two Post-Stroke Rehabilitation Programs: A

Follow-Up Study among Primary versus Specialized Health Care’, A. Martinuzzi

(ed.),PLOS ONE, vol. 11, no. 11, p. e0166242, viewed 5 November 2022,

<https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166242>.

Nakamura, Y., Hanafusa, H. & Yoshikawa, T. 1987, ‘Task-Priority Based Redundancy

Control of Robot Manipulators’, The International Journal of Robotics Research, vol.

6, no. 2, pp. 3–15, viewed 5 November 2022,

<https://journals.sagepub.com/doi/abs/10.1177/027836498700600201>.

Open Source Robotics Foundation 2014, ‘Gazebo: Tutorial: ROS

control’, classic.gazebosim.org, viewed 6 November 2022,

<https://classic.gazebosim.org/tutorials?tut=ros_control>.

Park, J., Chung, W. & Youm, Y. 1999, ‘Computation of Gradient of Manipulability for

Kinematically Redundant Manipulators Including Dual Manipulators

System’, Transaction on Control, Automation and Systems Engineering, vol. 1, no. 1,

pp. 8–15.

Ren, L., Mills, J.K. & Sun, D. 2007, ‘Experimental Comparison of Control Approaches on

Trajectory Tracking Control of a 3-DOF Parallel Robot’, IEEE Transactions on

Control Systems Technology, vol. 15, no. 5, pp. 982–8, viewed 5 November 2022,

<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4294020>.

Robotics Back-End 2019, ‘Package Organization For a ROS Stack [Best Practices]’, The

Robotics Back-End, viewed 7 November 2022,

<https://roboticsbackend.com/package-organization-for-a-ros-stack-best-practices/>.

ROS 2015, ‘ros_control - ROS Wiki’, Ros.org, viewed 7 November 2022,

<http://wiki.ros.org/ros_control>.

ROS 2016, ‘combined_robot_hw - ROS Wiki’, wiki.ros.org, viewed 7 November 2022,

<http://wiki.ros.org/combined_robot_hw>.

ROS 2019, ‘controller_manager - ROS Wiki’, wiki.ros.org, viewed 7 November 2022,

<http://wiki.ros.org/controller_manager>.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

42

ROS 2021, ‘Adding Physical and Collision Properties to a URDF Model’, ROS.org, viewed 7

November 2022,

<http://wiki.ros.org/urdf/Tutorials/Adding%20Physical%20and%20Collision%20Prop

erties%20to%20a%20URDF%20Model>.

Siciliano, B. 1990, ‘Kinematic control of redundant robot manipulators: A tutorial’, Journal

of Intelligent and Robotic Systems, vol. 3, no. 3, pp. 201–12, viewed 5 November

2022, <https://link.springer.com/content/pdf/10.1007/BF00126069.pdf>.

Siciliano, B. 2016, Springer handbook of robotics, Cham Springer International Publishing.

Tatlicioglu, E., Braganza, D., Burg, T.C. & Dawson, D.M. 2009, ‘Adaptive control of

redundant robot manipulators with sub-task objectives’, Robotica, vol. 27, no. 6, pp.

873–81, viewed 5 November 2022,

<https://gcris.iyte.edu.tr/bitstream/11147/2469/1/2469.pdf>.

Tatlicioglu, E., McIntyre, M.L., Dawson, D.M. & Walker, I.D. 2008, ‘Adaptive Non-Linear

Tracking Control Of Kinematically Redundant Robot Manipulators’, International

Journal of Robotics and Automation, vol. 23, no. 2, viewed 5 November 2022,

<https://www.actapress.com/Abstract.aspx?paperId=33314>.

Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G. & Dillmann, R. 2012, ‘Manipulability

analysis’, IEEE Xplore, viewed 5 November 2022,

<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6651576>.

Van Peppen, R.P., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H.J., Van der Wees, P.J. &

Dekker, J. 2004, ‘The impact of physical therapy on functional outcomes after stroke:

what’s the evidence?’, Clinical Rehabilitation, vol. 18, no. 8, pp. 833–62, viewed 5

November 2022,

<https://journals.sagepub.com/doi/abs/10.1191/0269215504cr843oa>.

Wang, C., Pen, L., Hou, Z.-G., Li, J. & Luo, L. 2019, ‘Kinematic Redundancy Analysis

during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton

Robot’, 2019 41st Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, pp. 5251–5, viewed 7 November 2022,

<https://ieeexplore.ieee.org/document/8857716>.

Yoshikawa, T. 1985, ‘Manipulability of Robotic Mechanisms’, The International Journal of

Robotics Research, vol. 4, no. 2, pp. 3–9, viewed 5 November 2022,

<https://journals.sagepub.com/doi/abs/10.1191/0269215504cr843oa>.

Luke Eyles | 12883423 Engineering Capstone Spring 2022

43

Yu, W., Rosen, J. & Li, X. 2011, ‘PID admittance control for an upper limb

exoskeleton’, IEEE Xplore, viewed 5 November 2022,

<https://ieeexplore.ieee.org/abstract/document/5991147>

Luke Eyles | 12883423 Engineering Capstone Spring 2022

44

Appendices

Appendix 1: Kinova Support email

From: "Kinova Support"

Sent: 2022-09-06 11:22:10

To: Luke.Eyles@student.uts.edu.au

Subject: RE: Fwd: Backwards compatibility of Jaco API

Hello Luke,

The GEN1 and GEN2 Jaco use the same API, however, it is possible that certain functions

won't work on your original JACO if your firmware version is not up to date.

Of course, some features simply won't be available on your harware.

The GEN3 API is simply not compatible with it.

Sincerely

Éric Linglet

Customer Support

Appendix 2: Actuator Specifications

Kinova actuator specifications (Source: Kinova n.d.)

Specification Value

Diameter 74.5 mm

Height 67 mm

Input/output fasteners M4x5mm screws

Weight 0.64 kg

Absolute position accuracy +/- 0.5 degree

Relative position accuracy +/- 0.05 degree

Motor type 24V Brushless DC

Maximum velocity 8 RPM

Torque (continuous) 15 Nm

Torque (peak) 26 Nm

mailto:Luke.Eyles@student.uts.edu.au

Luke Eyles | 12883423 Engineering Capstone Spring 2022

45

Appendix 3: Exoskeleton Component Properties

 Mass, inertia, and centre of mass for exoskeleton components used in URDF

 Inertia matrix diagonals (kg m2) Centre of mass (m)

Link Mass

(kg)

Ixx Iyy Izz x y z

Link 0 16.085 0.2489 0.9602 0.7191 0 0 0.32739

Link 1 1.425 0.009816 0.01068 0.002731 0 -

0.08439

0.23581

Link 2 3.725 0.04883 0.02890 0.02859 0 -

0.10732

0.15822

Link 3 1.064 0.004657 0.005665 0.001668 0 -

0.05292

Link 4 1.752 0.002533 0.02548 0.02755 0.185 0 0.14015

Link 5 2.120 0.01495 0.04711 0.04430 0.19483 0.04599 0.1

Actuator 0.640 0.0004614 0.0004614 0.0004440 0 0 0

Appendix 4: GitLab Repository Link

The repository for the codebase created during this project can be found at:

https://code.research.uts.edu.au/12883423/jexo

https://code.research.uts.edu.au/12883423/jexo

